Nonvolatile DACPOT ${ }^{\text {TM }}$ Electronic Potentiometer With Debounced Push Button Interface

FEATURES

Digitally Controlled Electronic Potentiometer

- 8-Bit Digital-to-Analog Converter (DAC)
- Independent Reference Inputs
- Differential Non-Linearity $- \pm 0.5$ LSB max
- Integral Non-Linearity - ± 1 LSB max
- Vout Value in EEPROM for Power-On Recall
- Equivalent to 256-Step Potentiometer
- Unity Gain Op Amp Drives up to 1 mA
- Simple Trimming Adjustment
- Debounced Push Button Interface
- Low Noise Operation
- "Clickless" Transitions between DAC Steps
- No Mechanical Wearout Problem
- 1,000,000 Stores (typical)
- 100 Year Data Retention
- Operation from +2.7V to +5.5 V Supply
- Low Power, 1 mW max at +5 V

OVERVIEW

The S9518 DACPOT trimmer is an 8-bit nonvolatile DAC designed to replace mechanical potentiometers. The S9518 includes a unity-gain amplifier to buffer the DAC output and enables Vout to swing from rail to rail. The DACPOT trimmer operates over a supply voltage range of 2.7 V to 5.5 V .

The S9518's simple push button input provides an ideal interface for operator adjusted equipment. This interface allows for quick and easy adjustment of even the most sophisticated systems.
The S 9518 is a pin-compatible performance upgrade for other industry nonvolatile potentiometers. The S9518 offers double the resolution of these devices and provides 'clickless' transitions of Vout.

FUNCTIONAL BLOCK DIAGRAM

PIN NAMES

Symbol	Description
$\overline{\mathrm{UP}}$	PB Input, Moves Vout Toward VH Input
$\overline{\mathrm{DWN}}$	PB Input, Moves Vout Toward V_{L} Input
V_{H}	Vref High
GND	Ground
$\mathrm{V}_{\text {OUT }}$	Trimmed Voltage Output
V_{L}	Vref Low
$\overline{\mathrm{STR}}$	Store Input, Providing a Control Input to Initiate a Store Operation
V_{DD}	Supply Voltage (2.7V to 5.5V)

2017 PGM T1.0

Analog Section

The S9518 is an 8-bit, voltage output digital-to-analog converter (DAC). The DAC consists of a resistor network that converts 8-bit digital values into equivalent analog output voltages in proportion to the applied reference voltage.

Reference Inputs

The voltage differential between the V_{L} and V_{H} inputs sets the full-scale output voltage range. V_{L} must be equal to or greater than ground (a positive voltage). VH must be greater than V_{L} and less than or equal to V_{DD}. See specifications on page 5 for guaranteed operating limits.

Output Buffer Amplifier

The voltage output is from a precision unity-gain follower that can slew up to $1 \mathrm{~V} / \mu \mathrm{s}$.

Digital Interface

The interface provides simple push button control of an up/down counter that drives the DAC. The DAC output is a ratiometric voltage output.
$\overline{U P}$ is an active low push-button input. An internal pull-up resistor, with nominal value of 50kohm, eliminates an external resistor that would be required with push button control. A 30 ms debounce period is included in the input timing to prevent multiple pulsing of the counter. Either a switch closure to ground or a LOW logic level will, after the debounce time, change the potentiometer tap position. $\overline{\mathrm{UP}}$ moves the output voltage towards the V_{H} reference input. If the $\overline{U P}$ push-button is kept depressed, the counter will continue to increment at the rate of one count every 250 ms for one second. After one second the

PINOUT

counter increments faster, one count every 50 ms , until the push-button is released. Changes to the DAC output using the $\overline{U P}$ input do not alter the data stored in EEPROM. The STR input updates the nonvolatile EEPROM memory.
$\overline{\text { DWN }}$ is an active low push-button input that decrements the counter and moves the potentiometer output voltage towards the V_{L} reference input. The DWN control input also includes an internal 50kohm pull-up resistor and a 30 ms debounce period to prevent multiple pulsing. A LOW logic level will also change the potentiometer tap position after the debounce period. If the DWN pushbutton is kept depressed, the counter continues to decrement at the rate of one count every 250 ms for one second. After one second the counter decrements at one count every 50 ms until the push-button is released. Changes to the DAC output using the DWN input do not alter the data stored in EEPROM.

STR This input can be used in two ways:

1) If the input is tied LOW, then AUTOSTORE is enabled. When VDD powers-down an automatic store cycle takes place that updates the nonvolatile EEPROM memory.
2) $\overline{\text { STR }}$ is an active low push-button input that also updates the nonvolatile memory. The input is debounced but does not have an internal pull-up resistor. For every valid push, the S9518 will store the current potentiometer position to EEPROM.

DEVICE OPERATION

There are five main blocks to the S9518: an 8 -bit EEPROM memory; input debounce circuits, control logic, and 8 -bit counter; 8 -bit data register; decode section and resistor ladder (DAC); and the buffer amplifier. The input control section operates just like an up/down counter. The output of this counter is fed to the data register and then decoded to activate one of 255 electronic switches connected to the resistor ladder. Each switch connects a point on the ladder to the buffer amplifier input. When requested, the contents of the counter can be stored in EEPROM memory and retained for future use. The ladder is comprised of 256 resistors of equal value connected in series. At the bottom of the ladder and at the junctions of the resistors there are electronic switches that transfer the voltage at each point to the buffer amplifier and hence to the output. The S9518 is designed to interface directly to two push button switches that effectively move the potentiometer wiper up or down. The UP and DWN inputs increment or decrement the 8 -bit counter respectively. The data input to the DAC is decoded to select one of the 256 wiper positions along the resistive ladder. The wiper increment input, UP and the wiper decrement input, DWN are connected to internal pull-ups so that they normally remain HIGH. When pulled LOW by an external push button switch or a logic LOW level input, the wiper will be switched to the next adjacent tap position. Internal debounce circuitry prevents inadvertent switching of the wiper position if UP or DWN remain LOW for less than 30 ms (typical). Each of the buttons can be pushed either once for a single increment/decrement or held low continuously for a multiple increments/decrements. The number of increments/decrements of the wiper position

Figure 1: Typical circuit with STR store pin used in AUTOSTORE mode

depends on how long the button is pushed. When making a continuous push, after the first second, the increment/ decrement speed increases. For the first second the device will be in the slow scan mode. Then if the button is held for longer than one second the device will go into the fast scan mode. As soon as the button is released the S9518 will return to a standby condition. The DAC, whether set to 00 or FF , acts like its mechanical equivalent and does not move beyond the last position. That is, the counter does not wrap around when clocked beyond FF or below 00.

AUTOSTORE

The value of the counter is stored in EEPROM memory whenever the chip senses a power-down of $V_{D D}$ while $\overline{\text { STR }}$ is enabled (held LOW). When power is restored, the contents of the memory are recalled and the counter reset to the last value stored. If AUTOSTORE is to be implemented, $\overline{\text { STR }}$ is typically hard wired to GND. If $\overline{\text { STR }}$ is held HIGH during power-up and then taken LOW, the wiper will not respond to the UP or DWN inputs until STR is brought HIGH and the store is complete. Figure 1.

Manual (Push Button) Store

When STR is not enabled (held HIGH) a push button switch may be used to pull STR LOW and released to perform a manual store of the wiper position in EEPROM memory. Figure 2.

Effect of $V_{D D}$ Removal

The resistor ladder, connected between V_{H} and V_{L}, does not change value when $V_{D D}$ is removed. However, the buffer amplifier no longer functions and consequently a high impedance appears at the $V_{\text {OUt }}$ pin.

Figure 2: Typical circuit with STR store pin controlled by push button switch

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Voltage on pins with reference to GND:

Analog Inputs	-0.5 V to $\mathrm{V}_{\mathrm{DD}+} .5 \mathrm{~V}$
Digital Inputs	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+.5 \mathrm{~V}$
Analog Outputs	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+.5 \mathrm{~V}$
Digital Outputs	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+.5 \mathrm{~V}$
Lead Solder Temperature $(10$ secs)	$300^{\circ} \mathrm{C}$

*COMMENT

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside those listed in the operation sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

RECOMMENDED OPERATING CONDITIONS

Condition	Min	Max
Temperature	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
$V_{D D}$	+2.7 V	+5.5 V

DAC DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {refH }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {reft }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless specified otherwise

	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Accuracy	INL	Integral Non-Linearity	ILOAD $=100 \mu \mathrm{~A}$,	-	0.5	± 1	LSB
	DNL	Differential Non-Linearity	ILOAD $=100 \mu \mathrm{~A}$, Guaranteed but not tested	-	0.1	± 0.5	LSB
References	V_{H}	$\mathrm{V}_{\text {refH }}$ Input Voltage		$\mathrm{V}_{\text {refL }}$	-	$V_{D D}$	V
	VL	VrefL Input Voltage		Gnd	-	$\mathrm{V}_{\text {reft }}$	V
	RIN	$\mathrm{V}_{\text {refH }}$ to $\mathrm{V}_{\text {refL }}$ Resistance		-	38k	-	Ω
	TCRin	Temperature Coefficient of RIN	$\mathrm{V}_{\text {refH }}$ to $\mathrm{V}_{\text {refL }}$	-	600	-	ppm $/{ }^{\circ} \mathrm{C}$
Analog Output	Gefs	Full-Scale Gain Error	DATA $=\mathrm{FF}$			± 1	LSB
	VoutZS	Zero-Scale Output Voltage	DATA $=00$	0		20	mV
	TCVout	Vout Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5, \mathrm{I}_{\mathrm{LOAD}}=50 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\text {refH }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {refL }}=0 \mathrm{~V} \\ & \text { Guaranteed but not tested } \end{aligned}$	-	-	50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	IL	Amplifier Output Load Current		-200		+1000	$\mu \mathrm{A}$
	Rout	Amplifier Output Resistance	$\begin{aligned} I_{L O A D}=100 \mu \mathrm{~A} & V_{D D} \end{aligned}=+5 \mathrm{~V}, V_{D D}=+3 \mathrm{~V}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
	PSRR	Power Supply Rejection	LIOAD $=10 \mu \mathrm{~A}$	-	-	1	LSB/V
	en	Amplifier Output Noise	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$	-	90	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	THD	Total Harmonic Distortion	V IN $=1 \mathrm{~V} \mathrm{rms}, \mathrm{f}=1 \mathrm{kHz}$	-	0.08	-	\%
	BW	Bandwidth - 3dB	V IN $=100 \mathrm{mV} \mathrm{rms}$	-	300	-	kHz

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min	Max	Unit	Test Method
$\mathrm{V}_{\text {ZAP }}$	ESD Susceptibility	2000		V	MS-883, TM 3015
$\mathrm{I}_{\text {LTH }}$	Latch-Up	100		mA	JEDEC Standard 17
$\mathrm{T}_{\text {DR }}$	Data Retention	100		Years	MS-883, TM 1008
$\mathrm{N}_{\text {END }}$	Endurance	$1,000,000$		Stores	MS-883, TM 1033

2017 PGM T4.0

DC ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}$, Unless otherwise specified

Symbol	Parameter	Conditions	Min	Max	Units
I_{DD}	Supply Current during store, note 1	$\overline{\mathrm{STR}}=\square$		1.2	mA
I_{SB}	Supply Standby Current			200	$\mu \mathrm{~A}$
I_{IH}	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$		10	$\mu \mathrm{~A}$
I_{IL}	Input Leakage Current, note 2	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		-100	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {IH }}$	High Level Input Voltage		2	$\mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		0	0.8	V

2017 PGM T5. 1

Notes:

1. IDD is the supply current drawn while the EEPROM is being updated. IDD does not include the current that flows through the Reference resistor chain.
2. $\overline{U P}$ and $\overline{D W N}$ have internal pull-up resistors of approximately $50 \mathrm{k} \Omega$. When the input is pulled to ground the resulting output current will be $\mathrm{V}_{\mathrm{DD}} / 50 \mathrm{k} \Omega$.

AC OPERATING CHARACTERISTICS $\mathrm{V} D=+4.5 \mathrm{~V}$ to +5.5 V

Symbol	Parameter	Limits			Units
		Min.	Typ.	Max.	
$\mathrm{f}_{\mathrm{GAP}}$	Time Between Two Separate Push Button Events	0			$\mu \mathrm{s}$
tDB	Debounce Time		30	60	ms
ts slow	After Debounce to Wiper Change on a Slow Mode	100	250	375	ms
ts FAST	Wiper Change on a Fast Mode	25	50	75	ms
tpu	Power-Up to Wiper Stable			500	$\mu \mathrm{s}$
$t_{R} V_{D D}$	V ${ }_{\text {DD }}$ Power-Up Rate	0.2		50	$\mathrm{mV} / \mathrm{\mu s}$
tasto	AUTOSTORE Cycle Time	2			ms
$\mathrm{t}_{\text {ASTH }}$	AUTOSTORE Threshold Voltage		4		V
tasend	AUTOSTORE Cycle End Voltage		3.5		V

2017 PGM T6.0

FIGURE 3. AUTOSTORE CYCLE TIMING DIAGRAM

Notes:

$\mathrm{V}_{\text {ASTH }}$ - AUTOSTORE threshold voltage
VASEND - AUTOSTORE cycle end voltage
tasto - AUTOSTORE cycle time
(6) Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal supply voltage.
(7) This parameter is periodically sampled and not 100% tested.

FIGURE 4. SLOW MODE TIMING

FIGURE 5. FAST MODE TIMING

8 Pin SOIC (Type S) Package JEDEC (150 mil body width)

ORDERING INFORMATION

2017 ILL8.0

Abstract

NOTICE SUMMIT Microelectronics, Inc. reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. SUMMIT Microelectronics, Inc. assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein reflect representative operating parameters, and may vary depending upon a user's specific application. While the information in this publication has been carefully checked, SUMMIT Microelectronics, Inc. shall not be liable for any damages arising as a result of any error or omission.

SUMMIT Microelectronics, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless SUMMIT Microelectronics, Inc. receives written assurances, to its satisfaction, that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; and (c) potential liability of SUMMIT Microelectronics, Inc. is adequately protected under the circumstances.

