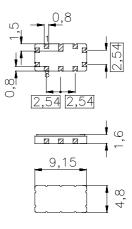


SAW Components

Data Sheet B3839

SAW Components	B3839
Low-Loss Filter	333,0 MHz

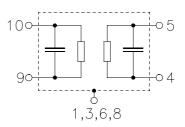
Data Sheet


Ceramic package QCC10B

Features

- Low-loss IF-filter for WLL
- Usable bandwidth 0,8 MHz
- Temperature stable
- Ceramic SMD package

Terminals


Gold plated

Dimensions in mm, approx. weight 0,2 g

Pin configuration

10	Input
9	Input ground
5	Output
4	Output ground
2, 7	Ground
1, 3, 6, 8	Case ground

Туре	Ordering code	Marking and Package according to	Packing according to		
B3839	B39331-B3839-Z710	C61157-A7-A49	F61074-V8035-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T_{A}	-40 / +85	°C
Storage temperature range	$T_{\rm stg}$	-40 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

SAW Components B3839

333,0 MHz **Low-Loss Filter**

Data Sheet

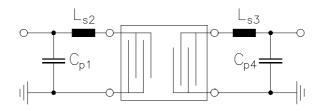
Characteristics

Operating temperature range:

 $T_{\rm A} = -40 \dots 85 \,^{\circ} {\rm C}$ $Z_{\rm S} = 50 \, \Omega$ and external matching network $Z_{\rm L} = 50 \, \Omega$ and external matching network Terminating source impedance: Terminating load impedance:

			min.	typ.	max.	
Center frequency		f _C				
	$\alpha_{rel} = 3,0 \text{ dB}$		332,88	333,0	333,12	MHz
Minimum insertion attenuation		α_{min}	_	6,5	8	dB
Passband width						
	$\alpha_{rel} \leq \text{3,0 dB}$	$B_{3,0dB}$	900	1010	1045	kHz
	$\alpha_{rel} \leq$ 20,0 dB	B_{20dB}	_	1840	2000	kHz
	$\alpha_{rel} \leq$ 30,0 dB	B_{30dB}	_	2080	2250	kHz
	$\alpha_{rel} \leq$ 40,0 dB	B_{40dB}	_	2250	2500	kHz
	$\alpha_{rel} \leq 50,0 \text{ dB}$	B_{50dB}	_	4500	_	kHz
Relative attenuation (relative to α_{min}) α_{rel}						
$f_{\rm c} - 50.0 \; {\rm MH}$	$f_{\rm c} - 3.0 \text{MH}$	Z	48	50	_	dB
$f_{\rm c} + 3.0 \rm MHz$	$f_{c} + 20,0 \text{ MH}$	Z	47	50	_	dB
$f_{\rm c}$ + 20,0 MH:	z f _c + 40,0 MH	Z	44	48	_	dB
$f_{\rm c}$ + 40,0 MH:	$z f_c + 50,0 MH$	z	48	50	_	dB
Amplitude ripple (p-p)		Δα				
	$f_{\rm c}\pm 0.4~{\rm MHz}$		_	0,5	1,0	dB
Absolute group delay (at f_c)		τ	_	0,9	_	μs
Group delay ripple (p-p)		Δτ				
	$f_{\rm c} \pm 0.4~{\rm MHz}$		_	430	500	ns
Reflected Wave Signal Suppression						
12 μs 20 μs	after main pulse		70	80	_	dB
Temperature coefficient of free	quency 1)	TC _f	<u> </u>	-0,036	_	ppm/K ²
Turnover temperature	-	T_0		15		°C

¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$


SAW Components B3839

Low-Loss Filter 333,0 MHz

Data Sheet

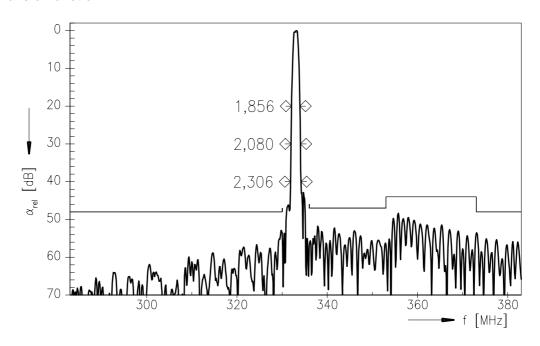
Matching network

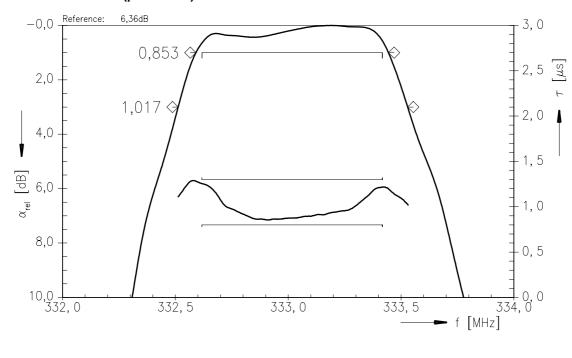
(Element values depend upon PCB layout)

 $C_{p1} = 18 pF$

 $L_{s2} = 22 \text{ nH}$

 $L_{s3} = 33 \text{ nH}$

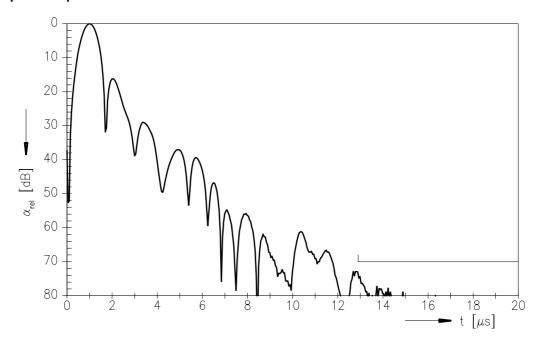

 $C_{p4} = 15 pF$


SAW Components B3839
Low-Loss Filter 333,0 MHz

Data Sheet

Transfer function

Transfer function (pass band)



SAW Components B3839

Low-Loss Filter 333,0 MHz

Data Sheet

Impulse response

SAW Components B3839

Low-Loss Filter 333,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2001. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.