

# **AM/FM Antenna Impedance Matching IC**

## **Description**

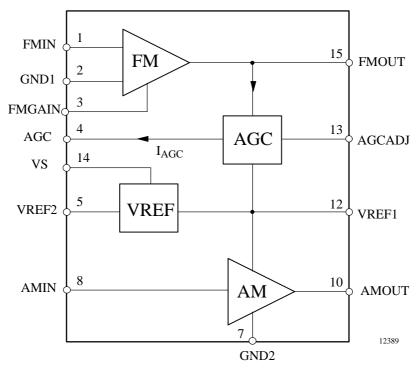
The U4253BM is an integrated AM/FM antenna impedance matching circuit in BICMOS technology. The

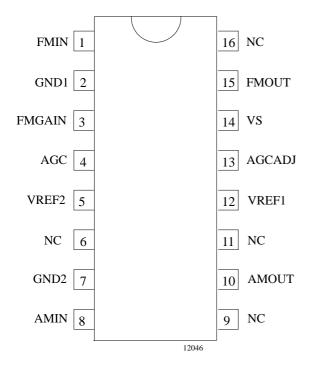
device is designed in particular for car application and is suitable for windscreen and roof antennas.

#### **Features**

- High dynamic range for AM and FM
- Integrated AGC for FM
- High intercept point 3rd order for FM
- FM amplifier adjustable to various cable impedance
- High intercept point 2nd order for AM
- Low noise output voltage
- Low power consumption

## **Block Diagram**





Figure 1. Block diagram



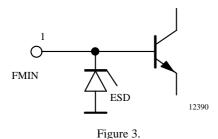
# **Ordering and Package Information**

| Extended Type Number | Package | Remarks                         |
|----------------------|---------|---------------------------------|
| U4253BM-AFP          | SO16    |                                 |
| U4253BM-AFPG3        | SO16    | Taping corresponding, ICE-286-3 |

# **Pin Description**



| Figure 2. | Pinning |
|-----------|---------|
|-----------|---------|


| Pin | Symbol | Function                                 |
|-----|--------|------------------------------------------|
| 1   | FMIN   | FM input                                 |
| 2   | GND1   | Ground for FM part                       |
| 3   | FMGAIN | FM gain adjustment                       |
| 4   | AGC    | AGC output                               |
| 5   | VREF2  | Reference voltage 2 output               |
| 6   | NC     | Not connected                            |
| 7   | GND2   | Ground for AM part                       |
| 8   | AMIN   | AM input                                 |
| 9   | NC     | Not connected                            |
| 10  | AMOUT  | AM output                                |
| 11  | NC     | Not connected                            |
| 12  | VREF1  | Reference voltage 1 output               |
| 13  | AGCADJ | Adjustment FM wide-band<br>AGC threshold |
| 14  | VS     | Supply voltage                           |
| 15  | FMOUT  | FM output                                |
| 16  | NC     | Not connected                            |



### **Pin Description**

#### **FMIN**

FMIN is the input of the FM amplifier. It is the base of a bipolar transistor. A resistor or a coil is connected between FMIN and VREF2. If a coil is used, noise performance is excellent.



#### GND1

To avoid crosstalk between AM and FM signals, the circuit has two separate ground pins. GND1 is the ground for the FM part.

#### **FMGAIN**

The DC current of the FM amplifier transistor is adjusted by an external resistor which is connected between FMGAIN and GND1. In order to influence the AC gain of the amplifier, a resistor is connected in series to an capacitor between FMGAIN and GND1. The capacitor has to be a short at frequencies of 100 MHz.

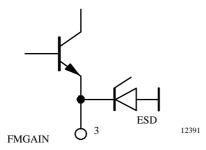



Figure 4.

#### **AGC**

DC current flows into the AGC pin at high FM antenna input signals. This current has to be amplified via the current gain of an external PNP transistor that feeds a PIN-diode. This diode dampens the antenna input signal and protects the amplifier input against overload. The maximum current which flows in the AGC pin is approximately 1 mA. In low end applications, the AGC function is not necessary and therefore the external components can be omitted.

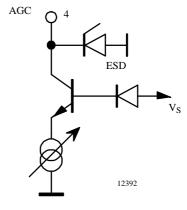



Figure 5.

#### **AGCADJ**

The threshold of the AGC can be adjusted by variing the DC current at pin AGCADJ. If pin AGCADJ is connected directly to GND1, the threshold is set to 96 dB $\mu$ V at the FM amplifier output. If a resistor is connected between AGCADJ and GND1, the threshold is shifted to higher values with increasing resistances. If AGCADJ is open, the threshold is set to 106 dB $\mu$ V.

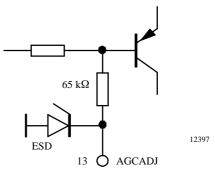



Figure 6.

#### **FMOUT**

The FM amplifiers output is an open collector of a bipolar RF-transistor. It should be connected to VS via a coil.

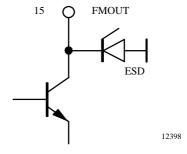



Figure 7.

# TEMIC

#### **AMIN**

The AM input has an internal bias voltage. The DC voltage at this pin is  $V_{Ref1}/2$ . The input resistance is about 470 k $\Omega$ . The input capacitance is less than 10 pF.

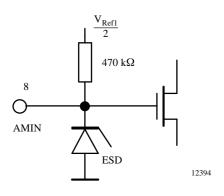



Figure 8.

#### **AMOUT**

The DC voltage at this pin is almost  $V_{Ref1}/2$ . The AC output resistance is about 200  $\Omega$ . The output capacitance is less than 10 pF.

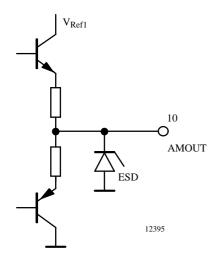



Figure 9.

#### VREF1

VREF1 is the stabilized voltage for the AM amplifier and the AGC block. To achieve excellent noise performance at LW frequencies, it is recommended that this pin is connected to ground via an external capacitor of about 1  $\mu F.$ 

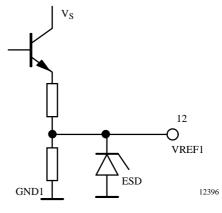
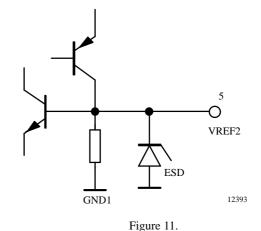




Figure 10.

#### VREF2

For the DC biasing of the FM amplifier a second voltage reference circuit is integrated. Because of temperature independence of the collector current the output voltage has a negative temperature coefficient of about -1~mV/K. To stabilize this voltage an external capacitor to ground of a few nF is recommended.



#### GND2

GND2 is the ground for the AM amplifier.



#### **Functional Description**

The U4253BM is an integrated AM/FM antenna impedance matching circuit. It compensates cable losses between the antenna (for example windscreen, roof or bumper antennas) and the car radio which is usually placed far away from the antenna.

The FM amplifier provides excellent noise performance. External components are used to adjust the gain and the input-output matching impedance. Therefore it is possible to adjust the amplifier to various cable impedances (usually 50, 75 or 150  $\Omega$ ). To protect the amplifier against input overload an Automatic Gain Control (AGC) is included on the chip. The AGC

observes the AC voltage at the FM amplifier output, rectifies this signal, and delivers DC current to dampen the input antenna signal via an external PIN diode. The threshold for the AGC is adjustable. Simple and temperature compensated biasing is possible due to the integrated voltage reference  $V_{\text{Ref}2}$ .

The AM part consists of a buffer amplifier. The voltage gain of this stage is approximately one. The input resistance is 470 k $\Omega$ , the input capacitance less than 10 pF. The output resistance is 150  $\Omega$ . An excellent dynamic range is achieved due to a special push-pull circuit technique.

### **Absolute Maximum Ratings**

Reference point is ground (Pins 2 and 7)

| Parameters                                              | Symbol                 | Value       | Unit |
|---------------------------------------------------------|------------------------|-------------|------|
| Supply voltage                                          | $V_{S}$                | 8.8         | V    |
| Power dissipation, $P_{tot}$ at $T_{amb} = 85^{\circ}C$ | P <sub>tot</sub>       | 460         | mW   |
| Junction temperature                                    | T <sub>i</sub>         | 150         | °C   |
| Ambient temperature                                     | T <sub>amb</sub>       | -40 to +85  | °C   |
| Storage temperature                                     | $T_{stg}$              | -50 to +150 | °C   |
| Electrostatic handling (HBM)                            | $\pm V_{\mathrm{ESD}}$ | 2000        | V    |

#### Thermal Resistance

| Parameters       | Symbol     | Value | Unit |
|------------------|------------|-------|------|
| Junction ambient | $R_{thJA}$ | 140   | K/W  |

# **U4253BM**



## **Electrical Characteristics**

See test circuit

 $\overline{V_S = 8 \text{ V}, T_{amb}} = 25^{\circ}\text{C}$ , unless otherwise specified

| Parameters                  | Test Conditions / Pins                                           | Symbol              | Min. | Тур. | Max. | Unit  |
|-----------------------------|------------------------------------------------------------------|---------------------|------|------|------|-------|
| Supply voltage              | Pin 14                                                           | Vs                  | 7.2  | 8    | 8.8  | V     |
| Supply currents             | Pin 14                                                           | Is                  |      | 4    |      | mA    |
| Reference voltage 1 output  | Pin 12                                                           | V <sub>Ref1</sub>   |      | 5.5  |      | V     |
| $(I_{12} = 0)$              |                                                                  | 1011                |      |      |      |       |
| Reference voltage 2 output  | Pin 5                                                            | V <sub>Ref2</sub>   |      | 2.6  |      | V     |
| $(I_5 = 0)$                 |                                                                  |                     |      |      |      |       |
| Temperature dependence of   | Pin 5                                                            | $V_{Ref2}/\Delta T$ |      | -1   |      | mV/K  |
| VREF2                       |                                                                  |                     |      |      |      |       |
| AM amplifier                |                                                                  | 1 _                 |      | I    |      | 1     |
| Input resistance            | Pin 8                                                            | R <sub>AMIN</sub>   |      | 470  |      | kΩ    |
| Input capacitance           | Pin 8                                                            | C <sub>AMIN</sub>   |      |      | 10   | pF    |
| Output resistance           | Pin 10                                                           | R <sub>OUT</sub>    |      | 200  |      | Ω     |
| Voltage gain                | Pin 10 / Pin 8                                                   | a                   |      | 0.85 |      |       |
| Output noise voltage        | Pin 10                                                           |                     |      |      |      |       |
| (rms value)                 | S1 switched to 2; $B = 6 \text{ kHz}$                            |                     |      |      |      |       |
|                             | 150 kHz to 300 kHz                                               | $V_{N1}$            |      | -2   |      | dBμV  |
|                             | 500 kHz to 6.5 kHz                                               | V <sub>N2</sub>     |      | -6   |      | dBμV  |
| 2nd harmonic                | Pin 10                                                           |                     | -60  |      |      | dBc   |
|                             | S2 switched to 1                                                 |                     |      |      |      |       |
|                             | $f_{AMIN} = 500 \text{ kHz},$<br>Output voltage = 110 dB $\mu$ V |                     |      |      |      |       |
| FM amplifier                | Output Voltage – 110 dBμ V                                       |                     |      |      |      |       |
|                             | I I 0 A D::: 15                                                  | т т                 |      | 22   | 25   | A     |
| Supply current limit        | $I_{AGC}$ , $I_{AGCADJ} = 0$ A, Pin 15<br>f = 100 MHz Pin 1      | I <sub>15</sub>     |      | 33   | 35   | mA    |
| Input resistance            |                                                                  | R <sub>FMIN</sub>   |      | 50   |      | Ω     |
| Output resistance           | f = 100 MHz Pin 15                                               | R <sub>FMOUT</sub>  |      | 50   |      | Ω     |
| Power gain                  | f = 100 MHz Pin 15/ Pin 1                                        | G                   |      | 5    |      | dB    |
| Output noise voltage        | Pin 15                                                           | $V_N$               |      | 0    |      | dBμV  |
| 2.1.1                       | f = 100 MHz, B = 120 kHz                                         |                     |      | 122  |      | 1DV   |
| 3rd order output intercept  | f = 100 MHz Pin 15                                               |                     |      | 132  |      | dBμV  |
| AGC                         | 6 100 MI                                                         | ***                 |      | 0.6  |      | 1D 17 |
| AGC input voltage threshold | f = 100 MHz Pin 15<br>S2 switched to 1;                          | $V_{th1}$           |      | 96   |      | dBμV  |
|                             | AGC threshold DC current is                                      |                     |      |      |      |       |
|                             | 10 μA at Pin 4                                                   |                     |      |      |      |       |
| AGC input voltage threshold | f = 100 MHz Pin 15                                               | V <sub>th2</sub>    | -    | 106  |      | dBμV  |
| AGC input voltage uneshold  | S2 switched to 2;                                                | v th2               |      | 100  |      | αυμ ν |
|                             | AGC threshold DC current is                                      |                     |      |      |      |       |
|                             | 10 μA at Pin 4                                                   |                     |      |      |      |       |
| AGC output current          | AGC active                                                       | I <sub>AGC</sub>    |      |      | 1.2  | mA    |

## **Test Circuit**

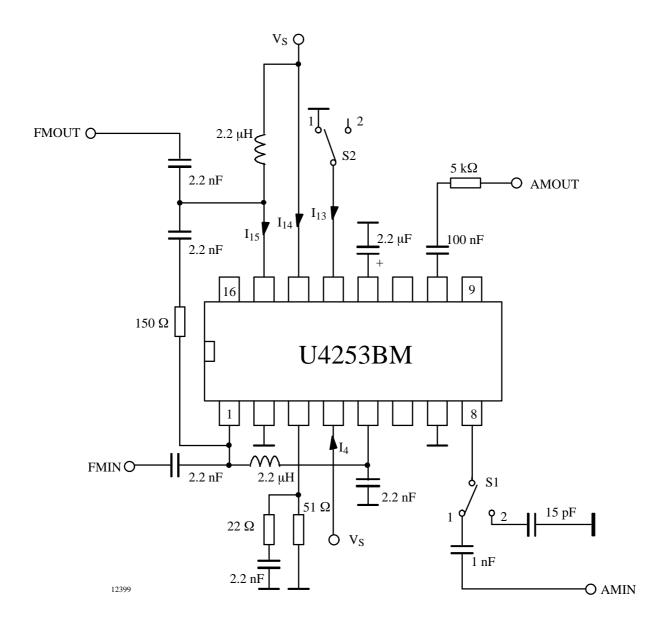
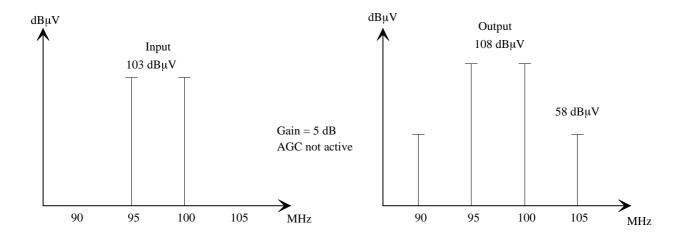




Figure 12.



# **FM Intermodulation Distortion**



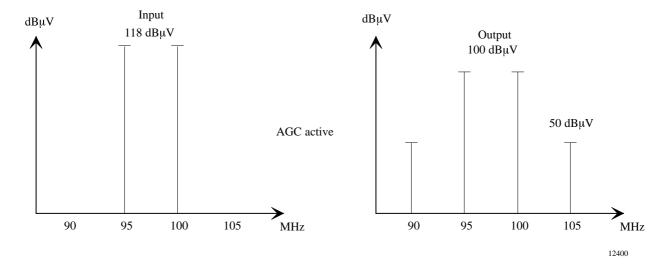



Figure 13.

# **Test Circuit for AM Large Signal Behavior**

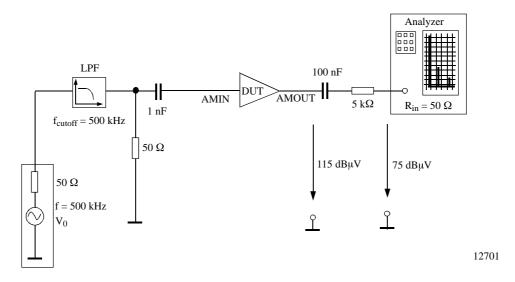



Figure 14.

## **AM Harmonic Distortion**

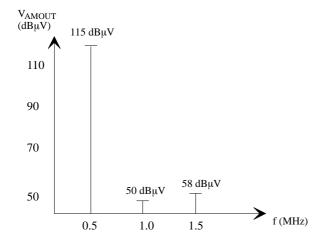
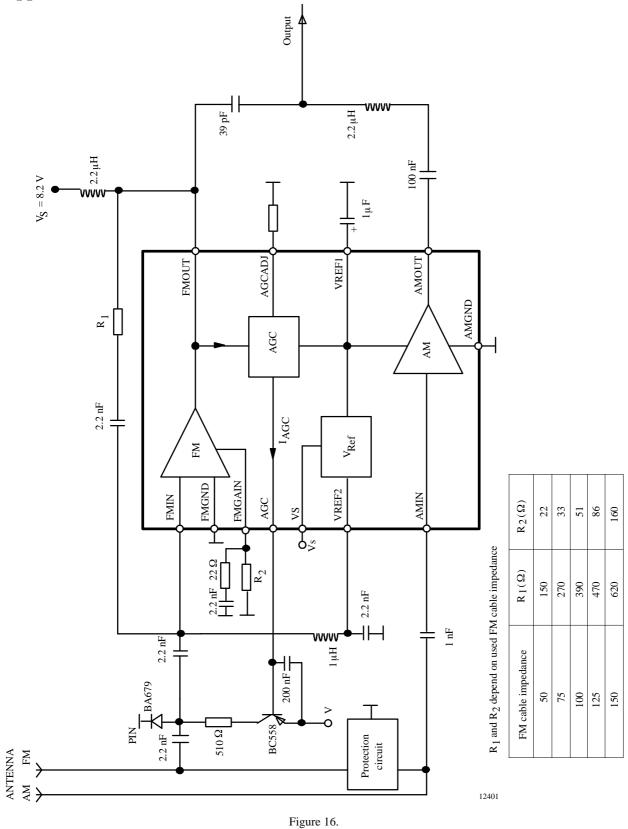
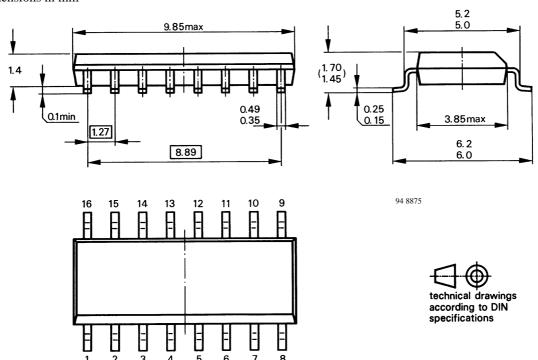




Figure 15.




# **Application Circuit**





## **Package Information**

Package SO16
Dimensions in mm



# **U4253BM**



## **Ozone Depleting Substances Policy Statement**

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

**TEMIC TELEFUNKEN microelectronic GmbH** semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

**TEMIC** can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423