

AUDIO CODEC WITH INTEGRATED HEADPHONE, SPEAKER AMPLIFIER AND TOUCH SCREEN CONTROLLER

FEATURES

- Stereo Audio Playback Up to 48 ksps
- Mono Audio Record up to 48 ksps
- Integrated PLL for Audio Clock Generation
- **Programmable Gain Amplifiers**
- Hardware Automatic Gain Control
- **Programmable Digital Audio Effects** Processing
- **Stereo Headset Interface**
- **Cellular Headset Interface**
- 8- Ω Speaker Driver
- **32-** Ω Receiver Driver
- Interface with Microphone
- Auto-Detection of Headset and Button Press
- Supports Both Cap and Cap-Less Interface for Headset
- **Programmable Audio Routing**
- **4-Wire Touch Screen Interface**
- Integrated Touch Screen Processor With **Fully Automated Modes of Operation**
- Programmable Converter Resolution, Speed, and Averaging
- Programmable Autonomous Timing Control
- **Direct Battery Measurement**
- Built-In Buffer for Touch Screen Data
- SPI[™] Serial Interface
- Low Power
- **Full Power-Down Control**
- 48-Pin QFN Package

APPLICATIONS

- **Personal Digital Assistants**
- **Smart Cellular Phones**
- **MP3 Players**

DESCRIPTION

The TSC2101 is a low-power highly integrated high performance codec and touch screen controller, which supports stereo audio DAC, monaural voice ADC and SAR ADC.

The TSC2101 features a high-performance audio codec with 16, 20, 24, or 32-bit stereo playback, mono record functionality at up to 48 ksps. The device integrates several analog features such as support for headset interface, cellular headset interface, microphone interface, and speaker and receiver drivers. The device supports auto detection of headset and button press without any glue logic. The TCS2101 has fully programmable audio. The digital audio data format is programmable to work with popular audio standard protocols (I2S, DSP, left/right justified) in master or slave mode, and also includes an on-chip PLL for flexible clock generation capability.

The TSC2102 contains a 12-bit 4-wire resistive touch screen converter complete with drivers, and interfaces to the host controller through a standard SPI™ serial interface. The on-chip processor provides extensive features specifically designed to reduce host processor and bus overhead, with capabilities that include fully automated operating modes, programmable conversion resolution up to 12 bits, programmable sampling rates up to 125 kHz, programmable conversion averaging, and programmable on-chip timing generation.

The TSC2102 offers battery measurement inputs capable of reading battery voltages up to 6 V, while operating at only 3 V. It also has an on-chip temperature sensor capable of reading 0.3°C resolution. The TSC2102 is available in a 48-lead QFN.

US Patent No. 624639

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SPI is a trademark of Motorola.

TSC2101

SLAS392-JUNE 2003

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DESIGNATOR	OPERATING TEMPERATURE RANGE	ORDERING NUMBER	TRANSPORT MEDIA
T000404/D07		507	4000 10 0 0 500	TSC2101IRGZ	Rails, 52
TSC21011RGZ	QFN-48	RGZ	-40°C to +85°C	TSC2101IRGZR	Tape and Reel, 2000

PIN ASSIGNMENTS

DIN		DESCRIPTION	DIN		DESCRIPTION
PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	IOVDD	IO Supply	25	MIC_DETECT_IN	Microphone detect input
2	PWR_DN	Hardware power down	26	OUT32N	Receiver driver output
3	RESET	Hardware reset	27	SPK1	Headset driver output/receiver driver output
4	GPIO2	General purpose IO	28	SPK2	Headset driver output
5	GPIO1	General purpose IO	29	DRVDD	Headphone driver power supply
6	AVDD2	Touch screen drivers, PLL analog power supply	30	SPKFC	Driver feedback/ speaker detect input
7	AVSS2	Analogground	31	VGND	Virtual ground for audio output
8	AVDD1	Audio ADC, DAC, reference, SAR, ADC analog power supply	32	DRVSS1	Driver ground
9	X+	X+ Position input and driver	33	OUT8N	Loudspeaker driver output
10	Y+	Y+ Position input and driver	34	BVDD	Battery power supply
11	Х-	X-Position input and driver	35	OUT8P	Loudspeaker driver output
12	Y–	Y-Position input and driver	36	DRVSS2	Driver ground
13	AVSS1	Analogground	37	PINTDAV	Pin interrupt/data available output
14	VREF	Referencevoltage	38	SS	SPI Slave select input
15	VBAT	Battery monitor input	39	MOSI	SPI Serial data input
16	AUX2	Secondary auxiliary input	40	MISO	SPI Serial data output
17	AUX1	First auxiliary input	41	SCLK	SPI Serial clock input
18	BUZZ_IN	Buzzer input	42	MCLK	Master clock
19	CP_OUT	Output to cell phone module	43	SDOUT	Audio data output
20	CP_IN	Input from cell phone module	44	SDIN	Audio data input
21	MICIN_HND	Handset microphone input	45	WCLK	Audio word clock
22	MICBIAS_HND	Handset microphone bias voltage	46	BCLK	Audio bit clock
23	MICIN_HED	Headset microphone input	47	DVDD	Digital core supply
24	MICBIAS_HED	Headset microphone bias voltage	48	DVSS	Digital core and IO ground

Terminal Functions

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

		UNITS	
AVDD1/2 to AVSS1/2	–0.3 V to 3.9 V		
DRVDD to DRVSS1/2	–0.3 V to 3.9 V		
BVDD to DRVSS1/2		–0.3 V to 4.5 V	
IOVDD to DVSS	–0.3 V to 3.9 V		
Digital input voltage to GND		-0.3 V to IOVDD + 0.3 V	
Operating temperature range		–40°C to 85°C	
Storage temperature range		–65°C to 105°C	
Junction temperature (TJ	Max)	105°C	
	Powerdissipation	(Τ _J Max – Τ _Α)/θ _{JA}	
QFN раскаде	θ_{JA} Thermal impedance	27°C/W	
Leadtemperature	Infrared (15 sec)	240°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

At +25°C, AVDD1, AVDD2, DRVDD, IOVDD = 3.3 V, BVDD = 3.9 V, DVDD = 1.8 V, Vref = 2.5 V, Fs (Audio) = 48 kHz, unless otherwise noted

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
TOUCH SCREEN		•			•
AUXILIARY ANALOG INPUT					
Input voltage range		0		+VREF	V
Inputcapacitance	AUX1/2 input selected as input by		25		pF
Input leakage current			±1		μΑ
BATTERY MONITOR INPUTS					
Input voltage range		0.5		6.0	V
Input leakage current	Battery conversion not selected		±1		μΑ
Accuracy	Variation across temperature after system calibration at room temperature		±25		mV
TOUCH SCREEN A/D CONVERTER					
Resolution	Programmable: 8-, 10-, 12-bits	8		12	Bits
No missing codes	12-Bitresolution		11		Bits
Integral nonlinearity		-5		5	LSB
Offset error		-6		6	LSB
Gain error		-6		6	LSB
Noise			50		μVrms
VOLTAGE REFERENCE	VREF				
Malla na na na	VREF output programmed = 2.5 V		2.5		
voltage range	VREF output programmed = 1.25 V		1.25		V
Voltage range	External reference	1.1		2.5	V
Reference drift	Internal VREF = 1.25 V		200		ppm/°C
Current drain	Extra current drawn when the internal reference is turned on.		500		μΑ
AUDIO CODEC					
ADC CHANNEL FILTER CHARACTERISTICS					
Filter gain from 0 to 0.39 Fs			±0.1		dB
Filter gain at 0.4125 Fs			-0.6		dB
Filter gain at 0.45 Fs			-3.25		dB
Filter gain at 0.5 Fs			-17.5		dB
Filter gain from 0.55 Fs to 64 Fs			-75		dB
Group delay			17/Fs		sec

ELECTRICAL CHARACTERISTICS (continued)

At +25°C, AVDD1, AVDD2, DRVDD, IOVDD = 3.3 V, BVDD = 3.9 V, DVDD = 1.8 V, Int. V_{ref} = 2.5 V, Fs (Audio) = 48 kHz, unless otherwise noted (continued)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNITS	
MICROPHONE INPUT TO ADC	MICIN_HED 1020 Hz sine wave input, Fs = 48 ksps				
Full-scale input voltage (0 dB)		0.707		Vrms	
Input common mode		1.5		V	
SNR	Measured as idle channel noise, 0 dB gain, A-weighted	88		dBA	
THD	0.63 Vrms input, 0-dB gain	80		dB	
PSRR	217 Hz, 100 mV on AVDD1/2(1)	55		dB	
	1020 Hz, 100 mV on AVDD1/2(1)	55		dB	
Muteattenuation	Output code with 0.63 Vrms sine wave input at 1kHz	0000h			
Inputresistance	Only ADC on	15	50	kΩ	
	ADC and Sidetone on	8	16	kΩ	
Input capacitance		10		pF	
HEADSET MICROPHONE BIAS					
	D7D8=00 control register 1DH/Page 2	3.3			
Voltagerange	D7D8=01 control register 1DH/Page 2	2.5		V	
	D7D8=1X control register 1DH/Page 2	2			
PSRR	217 Hz, 100 mV on AVDD1/2	55		dB	
	217 Hz, 100 mV on BVDD	70			
	1020 Hz, 100 mV on AVDD1/2	55]	
	1020 Hz, 100 mV on BVDD	70			
Sourcing current		1		mA	
HANDSET MICROPHONE BIAS					
Malla na na na	D6=0 control register 1DH/Page 2	3			
voltage range	D6=1 control register 1DH/Page 2	2.5		V	
PSRR	217 Hz, 100 mV on AVDD1/2	55		dB	
	1020 Hz, 100 mV on AVDD1/2	55			
Sourcing current		1		mA	
DAC INTERPOLATION FILTER					
Pass band		20	0.45Fs	Hz	
Pass band ripple		±0.06		dB	
Transition band		0.45Fs	0.5501Fs	Hz	
Stop band		0.5501Fs	7.455Fs	Hz	
Stop band attenuation		65		dB	
Filter group delay		21/Fs		Sec	
De-emphasis error		±0.1		dB	

(1) ADC PSRR measurement is calculated as:

$$PSRR = 20 \log_{10} \left(\frac{VSIG_{sup}}{V_{ADCOUT}} \right)$$

where $\mathsf{VSIG}_{\mathsf{Sup}}$ is the ac signal applied on AVDD, which is 100 mVpp at 1 kHz, and

 $V_{ADCOUT} = \frac{Amplitude of Digital Output}{Max Possible Digital Amplitude}$

ELECTRICAL CHARACTERISTICS (continued) At +25°C, AVDD1, AVDD2, DRVDD, IOVDD = 3.3 V, BVDD = 3.9 V, DVDD = 1.8 V, V_{ref} = 2.5 V, Fs (Audio) = 48 kHz, unless otherwise noted (continued)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNITS
DAC HEADPHONE OUTPUT	Load = 16 Ω (single-ended), 50 pF			
Full-scale output voltage (0dB)		0.848		Vrms
Output common mode		1.5		V
SNR	Measured as idle channel noise, A-weighted	90		dBA
THD	-1 dBFS Input, 0-dB gain	-65		dB
PSRR	217 Hz, 100 mV on AVDD1/2(1)	55		dB
	1020 Hz, 100 mV on AVDD1/2(1)	55		dB
Interchannel isolation	Coupling from ADC to DAC	80		dB
Muteattenuation		90		dB
Maximum output power	Perchannel	35		mW
Digital volume control		-63.5	0	dB
Digital volume control step size		0.5		dB
Channelseparation	Between SPK1 and SPK2	-75		dB
DAC SPEAKER OUTPUT	Load = 8 Ω (differential), 50 pF			
Full-scale output voltage (0 dB)		1.838		Vrms
Output common mode		1.75		V
SNR	Measured as idle channel noise, A-weighted	95		dBA
THD	-1 dBFS Input, 0-dB gain	-65		dB
PSRR	217 Hz, 100 mV on AVDD1/2	70		dB
	217 Hz, 100 mV on BVDD	70		
	1020 Hz, 100 mV on AVDD1/2	70		
	1020 Hz, 100 mV on BVDD	70		
Interchannel isolation	Coupling from ADC to DAC	90		dB
Muteattenuation		90		dB
Maximum output power		335		mW
CELLPHONE				
MIC INPUT TO CPOUT	1020-Hz Sine wave input on MICIN_HND, load on CP_OUT = $10 \text{ k}\Omega$, 50 pF			
Full-scale input voltage (0 dB)		0.707		Vrms
Input common mode		1.5		V
Full-scale output voltage (0 dB)		0.707		Vrms
Output common mode		1.5		V
SNR	Measured as idle channel noise, A-weighted	90		dBA
THD	0 dBFS Input, 0-dB gain	-72		dB
PSRR	217 Hz, 100 mV on AVDD1/2	45		dB
	1020 Hz, 100 mV on AVDD1/2	45		
Interchannel isolation	CP_IN to CP_OUT	75		dB
Muteattenuation	CP_OUT muted	90		dB

(1) DAC PSRR measurement is calculated as:

$$PSRR = 20 \log_{10} \left(\frac{VSIG_{sup}}{V_{SPK1/2}} \right)$$

ELECTRICAL CHARACTERISTICS (continued) At +25°C, AVDD1, AVDD2, DRVDD, IOVDD = 3.3 V, BVDD = 3.9 V, DVDD = 1.8 V, V_{ref} = 2.5 V, Fs (Audio) = 48 kHz, unless otherwise noted (continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CP_IN TO 32Ω RECEIVER (SPK1–OUT32N)	1020-Hz Sine wave input on CP_IN, load on SPK1 – OUT32N = 32 Ω (differential), 50 pF				
Full-scale input voltage (0 dB)			0.707		Vrms
Input common mode			1.5		V
Full-scale output voltage (0 dB)			0.697		Vrms
Output common mode			1.5		V
SNR			95		dBA
THD			-80		dB
PSRR			45		dB
			45		
Interchannel isolation			76		dB
Mute attenuation			90		dB
DIGITAL INPUT / OUTPUT					
Logic family			CMOS		
Logic level: VIH	I _{IH} = +5 μA	0.7xIOVDD			V
VIL	I _{IL} = +5 μA	-0.3		0.3xIOVDD	V
VOH	I _{OH} = 2 TTL loads	0.8xIOVDD			V
VOL	I _{OL} = 2 TTL loads			0.1xIOVDD	V
Capacitive load			10		pF

ELECTRICAL CHARACTERISTICS (continued) At +25°C, AVDD1, AVDD2, DRVDD, IOVDD = 3.3 V, BVDD = 3.9 V, DVDD = 1.8 V, V_{ref} = 2.5 V, Fs (Audio) = 48 kHz, unless otherwise noted (continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY REQUIREMENTS						
Power supply voltage						
AVDD1, AVDD2		3	3.3	3.6	V	
DRVDD		3	3.3	3.6	V	
BVDD		3.5		4.2	V	
IOVDD	Max MCLK = 100 MHz	2		3.6	V	
	Max MCLK = 50 MHz	1.1		3.6	V	
DVDD		1.65	1.8	1.95	V	
	IAVDD1, host controlled AUX1 conversion at 10 ksps with external reference		55			
Iouch-screen ADC quiescent current	IDVDD, host controlled AUX1 conversion at 10 ksps		100		μΑ	
	IAVDD1 with loudspeaker output (no signal), PLL off		2.4			
	IBVDD with loudspeaker output (no signal), PLL off		7.8			
Analog supply current – audio play back only	IAVDD1 with headphone output (no signal), VGND off, PLL off		2.2		mA	
	IDRVDD with headphone output (no signal), VGND off, PLL off		3.1			
Digital supply current – audio play back only	IDVDD, PLL off		2.5		mA	
	IAVDD1, headset mic, PLL off		4.4			
Analog supply current – mic record only	IBVDD, headset mic, PLL off		1.5		mA	
	IAVDD1, handset mic, PLL off		5.4			
Digital supply current – mic record only	IDVDD, PLL off		1.5		mA	
Analog supply current	IAVDD2, PLL on		1.1		mA	
Digital supply current	IDVDD, PLL on		0.9		mA	
	Hardware power down		10			
	Only headset/button detection enabled		50			
Total current	Only auto temperature measurement with 5.59 min delay		40		μA	
	Headset/button detection and auto temperature measurement with 5.59 min delay		65			

FUNCTIONAL BLOCK DIAGRAM

MECHANICAL DATA

MPQF123 - FEBRUARY 2002

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

RGZ (R-PQFP-N48)

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads, (QFN) package configuration.
- D. The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane.
- E. Falls within JEDEC M0-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated