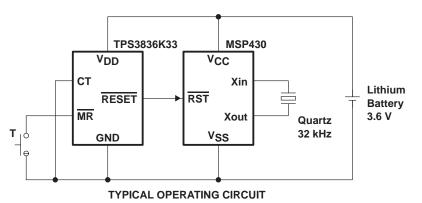

- Supply Current of 220 nA (Typ)
- Precision Supply Voltage Supervision Range: 1.8 V, 2.5 V, 3.0 V, 3.3 V
- Power-On Reset Generator With Selectable Delay Time of 10 ms or 200 ms
- Push/Pull RESET Output (TPS3836), RESET Output (TPS3837), or Open-Drain RESET Output (TPS3838)
- Manual Reset
- 5-Pin SOT-23 Package
- Temperature Range -40°C to 85°C

description

The TPS3836, TPS3837, TPS3838 families of supervisory circuits provide circuit initialization and timing supervision, primarily for DSP and processor-based systems.

During power on, RESET is asserted when the supply voltage V_{DD} becomes higher than 1.1 V. Thereafter, the supervisory circuit monitors V_{DD} and keeps RESET output active as long as V_{DD} remains below the threshold voltage V_{IT} . An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time starts after V_{DD} has risen above the threshold voltage V_{IT} .

- Applications Include
 - Applications Using Low-Power DSPs, Microcontrollers, or Microprocessors
 - Portable/Battery-Powered Equipment
 - Intelligent Instruments
 - Wireless Communication Systems
 - Notebook Computers
 - Automotive Systems



When CT is connected to GND a fixed delay time of typical 10 ms is asserted. When connected to V_{DD} the delay time is typically 200 ms.

When the supply voltage drops below the threshold voltage VIT, the output becomes active (low) again.

All the devices of this family have a fixed-sense threshold voltage VIT set by an internal voltage divider.

The TPS3836 has an active-low push-pull RESET output. The TPS3837 has active-high push-pull RESET, and TPS3838 integrates an active-low open-drain RESET output.

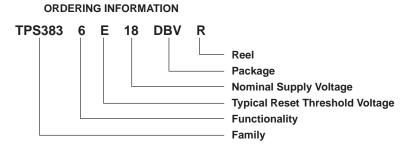
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2000, Texas Instruments Incorporated

SLVS292 – JUNE 2000

description (continued)


The product spectrum is designed for supply voltages of 1.8 V, 2.5 V, 3 V, and 3.3 V. The circuits are available in a 5-pin SOT-23 package. The TPS3836, TPS3837, TPS3838 families are characterized for operation over a temperature range of -40°C to 85°C.

TA	DEVICE	ENAME	THRESHOLD VOLTAGE	SYMBOL		
	TPS3836E18DBVR [†]	TPS3836E18DBVT [‡]	1.71 V	PDNI		
	TPS3836J25DBVR [†]	TPS3836J25DBVT [‡]	2.25 V	PDSI		
	TPS3836L30DBVR [†]	TPS3836L30DBVT [‡]	2.64 V	PCAI		
	TPS3836K33DBVR [†]	TPS3836K33DBVT [‡]	2.93 V	PDTI		
	TPS3837E18DBVR [†]	TPS3837E18DBVT [‡]	1.71 V	PDOI		
4000 4 0000	TPS3837J25DBVR [†]	TPS3837J25DBVT [‡]	2.25 V	PDRI		
–40°C to 85°C	TPS3837L30DBVR [†]	TPS3837L30DBVT [‡]	2.64 V	PCBI		
	TPS3837K33DBVR [†]	TPS3837K33DBVT [‡]	2.93 V	PDUI		
	TPS3838E18DBVR [†]	TPS3838E18DBVT [‡]	1.71 V	PDQI		
	TPS3838J25DBVR [†]	TPS3838J25DBVT [‡]	2.25 V	PDPI		
	TPS3838L30DBVR [†]	TPS3838L30DBVT [‡]	2.64 V	PCCI		
	TPS3838K33DBVR [†]	TPS3838K33DBVT [‡]	2.93 V	PDVI		

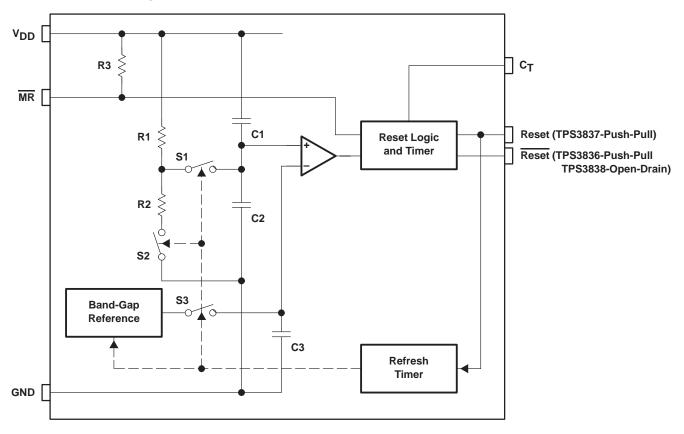
PACKAGE INFORMATION

[†] The DBVR passive indicates tape and reel of 3000 parts.

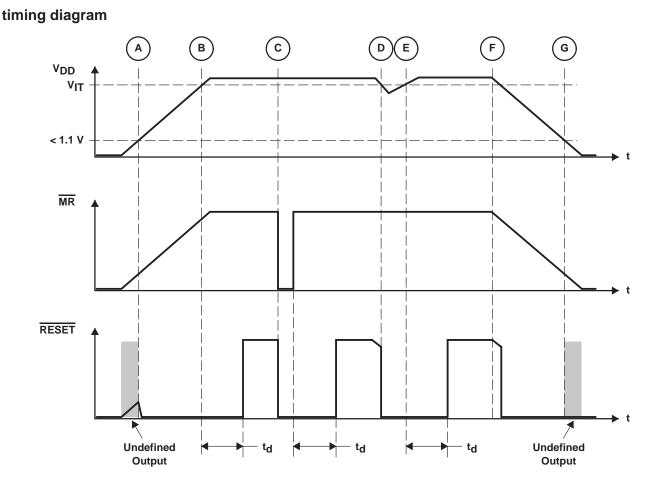
[‡] The DBVT passive indicates tape and reel of 250 parts.

FUNCTION TABLE TPS3836, TPS3837, TPS3838

MR	$V_{DD} > V_{IT}$	RESET§	RESET¶
L	0	L	Н
L	1	L	Н
н	0	L	Н
Н	1	Н	L


§ TPS3836 and TPS3838

¶ TPS3837


SLVS292 – JUNE 2000

functional block diagram

SLVS292 – JUNE 2000

SLVS292 – JUNE 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note 1)	
All other pins (see Note 1)	
Maximum low output current, I _{OL}	
Maximum high output current, I_{OH}	
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{DD}$)	
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{DD}$)	
Continuous total power dissipation	
Operating free-air temperature range, T _A	
Storage temperature range, T _{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND. For reliable operation, the device must not be operated at 7 V for more than t=1000 h continuously

DISSIPATION RATING TABLE					
PACKAGE	T _A <25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
DBV	437 mW	3.5 mW/ºC	280 mW	227 mW	

recommended operating conditions at specified temperature range

	MIN	MAX	UNIT
Supply voltage, V _{DD}	1.6	6	V
Input voltage, VI	0	V _{DD} + 0.3	V
High-level input voltage, VIH	$0.7 \times V_{DD}$		V
Low-level input voltage, VIL		$0.3 \times V_{DD}$	V
Input transition rise and fall rate at \overline{MR} , $\Delta t/\Delta V$		100	ns/V
Operating free-air temperature range, T _A	-40	85	°C

SLVS292 – JUNE 2000

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CO	NDITION	MIN	TYP	MAX	UNIT
		RESET	V _{DD} = 3.3 V,	I _{OH} = -2 mA				
		(TPS3836)	V _{DD} = 6 V,	I _{OH} = -3 mA	0.8×			.,
VOH	High-level output voltage	RESET	V _{DD} = 1.8 V,	I _{OH} = -1 mA	VDD			V
		(TPS3837)	V _{DD} = 3.3 V,	$I_{OL} = -2 \text{ mA}$				
		RESET	V _{DD} = 1.8 V,	I _{OL} = 1 mA				
		(TPS3836/8)	V _{DD} = 3.3 V,	$I_{OL} = 2 \text{ mA}$				
V _{OL}	Low-level output voltage	RESET	V _{DD} = 3.3 V,	$I_{OL} = 2 \text{ mA}$			0.4	V
		(TPS3837)	V _{DD} = 6 V,	$I_{OL} = 3 \text{ mA}$				
		TPS3836/8	$V_{DD} \ge 1.1 V$,	l _{OL} = 50 μA			0.2	
	Power-up reset voltage (see Note 2)	TPS3837	V _{DD} ≥ 1.1 V,	I _{OH} = -50 μA	0.8 × V _{DD}			V
		TPS383xE18			1.66	1.71	1.74	
		TPS383xJ25	1		2.18	2.25	2.29	
VIT	Negative-going input threshold voltage (see Note 3)	TPS383xL30	$T_A = -40^{\circ}C$ to $85^{\circ}C$		2.56	2.64	2.69	V
		TPS383xK33		2.84	2.93	2.99		
	Hysteresis at V _{DD} input		1.7 V < V _{IT} < 2.5 V			30		
V _{hys}			2.5 V < V _{IT} < 3.5 V			40		mV
			3.5 V < V _{IT} < 5 V			50		
ΙΗ	High-level input current	MR (see Note 4)	$\overline{\text{MR}} = 0.7 \times \text{V}_{\text{DD}},$	V _{DD} = 6 V	-40	-60	-100	μΑ
		СТ	CT = V _{DD} = 6 V		-25		25	nA
IIL	Low-level input current	MR (see Note 4)	<u>MR</u> = 0 V,	V _{DD} = 6 V	-130	-200	-340	μΑ
		СТ	CT = 0 V,	V _{DD} = 6 V	-25		25	nA
ЮН	High-level output current	TPS3838	$V_{DD} = V_{IT} + 0.2 V,$	VOH = VDD			25	nA
			V _{DD} > V _{IT} ,	V _{DD} < 3 V		220	400	
IDD	Supply current		V _{DD} > V _{IT} ,	V _{DD} > 3 V		250	450	nA
	· · ·		V _{DD} < V _{IT}			10	15	μΑ
	Internal pullup resistor at MR					30		kΩ
CI	Input capacitance at MR, CT		$V_{I} = 0 V \text{ to } V_{DD}$			5		pF

NOTES: 2. The lowest voltage at which RESET output becomes active. t_r , $V_{DD} \ge 15 \,\mu s/V$

3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 µF) should be placed near the supply terminal. 4. If manual reset is unused, MR should be connected to V_{DD} to minimize current consumption.

SLVS292 – JUNE 2000

timing requirements at R_L = 1 M Ω , C_L = 50 pF, T_A = 25°C

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
		at V _{DD}	$V_{IH} = V_{IT} + 0.2 V,$	$V_{IL} = V_{IT} - 0.2 V$	6			μs
tw	Pulse width	at MR	$\label{eq:VDD} \begin{array}{l} V_{DD} \geq V_{IT} + 0.2 \ V, \\ V_{IH} = 0.7 \times V_{DD} \end{array}$	$V_{IL} = 0.3 \times V_{DD},$	1			μs

switching characteristics at R_L = 1 M Ω , C_L = 50 pF, T_A = 25°C

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Delay face		$\label{eq:main_state} \begin{split} \frac{V_{DD} \geq V_{IT} + 0.2 \text{ V}, \\ MR = 0.7 \times V_{DD}, \\ CT = GND, \\ \text{See timing diagram} \end{split}$	5	10	15	
td	Delay time		$eq:def_def_def_def_def_def_def_def_def_def_$	100	200	300	ms
^t PHL	Propagation (delay) time, high-to-low-level output	V _{DD} to RESET delay	$V_{IL} = V_{IT} - 0.2 \text{ V},$ $V_{IH} = V_{IT} + 0.2 \text{ V}$			10	μs
		(TPS3836, TPS3838)	V _{IL} = 1.6 V			50	
^t PLH	Propagation (delay) time, low-to-high-level output	V _{DD} to RESET delay	$V_{IL} = V_{IT} - 0.2 \text{ V},$ $V_{IH} = V_{IT} + 0.2 \text{ V}$			10	μs
		(TPS3837)	V _{IL} = 1.6 V			50	
^t PHL	Propagation (delay) time, high-to-low-level output	MR to RESET delay (TPS3836, TPS3838)	$V_{DD} \ge V_{IT} + 0.2 \text{ V},$ $V_{IL} = 0.3 \times V_{DD},$			0.1	μs
^t PLH	Propagation (delay) time, low-to-high-level output	MR to RESET delay (TPS3837)	$V_{IL} = 0.7 \times V_{DD}$			0.1	μs

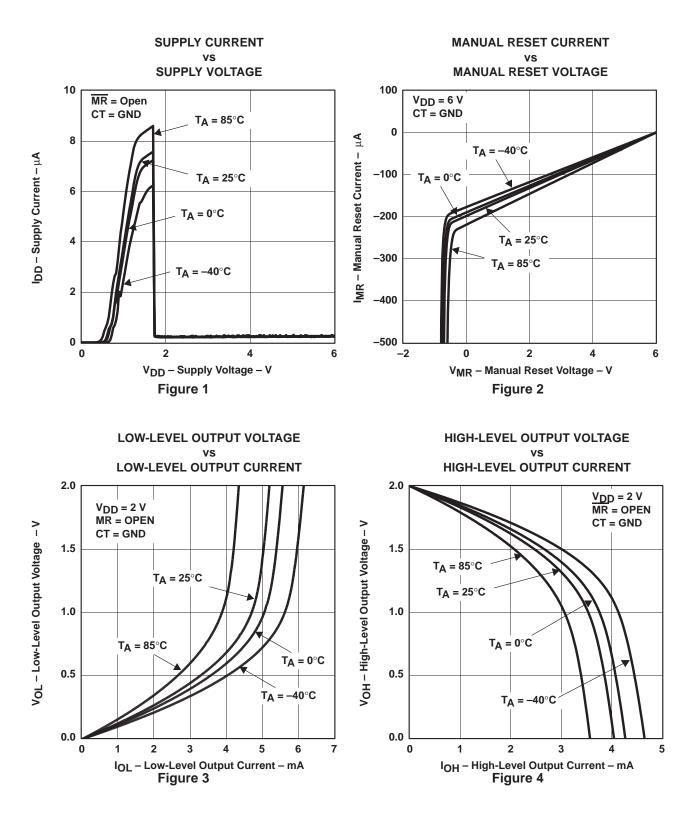
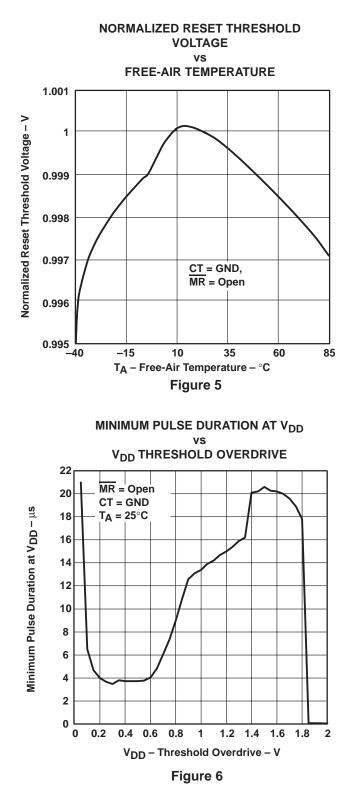

TYPICAL CHARACTERISTICS

Table of Graphs

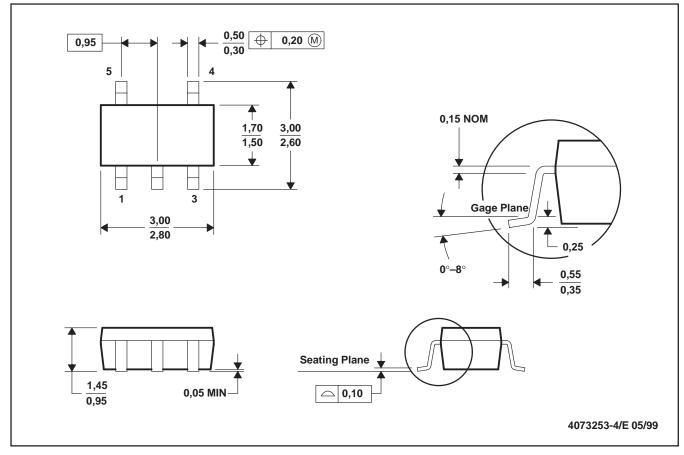
			FIGURE
IDD	Supply current	vs Supply voltage	1
IMR	Manual reset current	vs Manual reset voltage	2
VOL	Low-level output voltage	vs Low-level output current	3
VOH	High-level output voltage	vs High-level output current	4
	Normalized reset threshold voltage	vs Free-air temperature	5
	Minimum pulse duration at V _{DD}	vs V _{DD} Threshold overdrive	6

SLVS292 – JUNE 2000



TYPICAL CHARACTERISTICS

SLVS292 - JUNE 2000



SLVS292 – JUNE 2000

DBV (R-PDSO-G5)

MECHANICAL DATA

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-178

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated