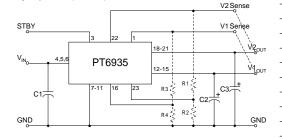

SLTS091

Revised (7/31/2000)


Features

- Dual Outputs (See Ordering Information)
- 5.0V Input (3.3V for PT6935)
- Both Outputs Adjustable
- Remote Sense
- Standby Function
- Soft-Start
- Internal Sequencing
- Short Circuit Protection
- 23-pin Space-Saving Package
- Solderable Copper Case

The PT6935/6/7 is a series of dual output ISRs designed to power the latest generation of mixed signal ICs. Both output voltages are independently adjustable with external resistors, and may also be set to at least one alternative bus voltage with a simple pin-strap. The PT6935 series has internal power sequencing to accommodate the requirements of the latest DSP chips, such as TI's 'C6000 series.

Standard Application

 $\begin{array}{l} C_1 = Req' d\ 560 \mu F\ electrolytic\ {}^{(1)} \\ C_2 = Req' d\ 330 \mu F\ electrolytic\ {}^{(1)} \\ C_3 = Optional\ 100 \mu F\ electrolytic \end{array}$

Pin-Out Information

Pin	Function	Pin	Function
1	V ₁ Remote Sense	13	V_{lout}
2	Do Not Connect	14	V_{lout}
3	STBY	15	V_{lout}
4	Vin	16	V ₁ Adjust*
5	Vin	17	Do Not Connect
6	Vin	18	V_{2out}
7	GND	19	V_{2out}
8	GND	20	V_{2out}
9	GND	21	V_{2out}
10	GND	22	V ₂ Remote Sense
11	GND	23	V ₂ Adjust*
12	Vlout		

Ordering Information

PT6935 \Box = +2.5/1.8 Volts **PT6936** \Box = +3.3/2.5 Volts **PT6937** \Box = +3.3/1.8 Volts

PT Series Suffix (PT1234X)

Case/Pin Configuration

Comiguration	
Vertical Through-Hole	N
Horizontal Through-Hole	Α
Horizontal Surface Mount	С

(For dimensions and PC board layout, see Package Styles 1320 and 1330.)

Preliminary Specifications

Characteristics				P	T6935 SERII	ES	
(T _a = 25°C unless noted)	Symbols	Conditions		Min	Тур	Max	Units
Output Current	Io	T _a = +60°C, 200 LFM, pkg N; Vin =5.0V	$V_1 = 3.3V$ $V_2 = 2.5V$	0.1 (2)	8.0 (3) 3.0 (3)	13.0 (4) 5.0 (4)	A
			V ₁ =3.3 V V ₂ =1.8 V	0.1 (2)	8.0 (3) 2.0 (3)	13.0 (4) 2.8 (4)	A
			V ₁ =2.5V V ₂ =1.8V	0.1 (2)	7.0 (3) 2.5 (3)	10.0 (4) 6.0 (4)	A
		$T_a = +25$ °C, natural convection	$V_1 = 3.3V$ $V_2 = 2.5V$	0.1 (2)	8.0 (3) 3.0 (3)	13.0 (4) 5.0 (4)	A
			V ₁ =3.3 V V ₂ =1.8 V	0.1 (2)	8.0 (3) 2.0 (3)	13.0 (4) 3.0 (4)	A
			$V_1 = 2.5V$ $V_2 = 1.8V$	0.1 (2)	7.0 (3) 2.5 (3)	12.0 (4) 6.0 (4)	A
Short Circuit Current Threshold	I_{sc}	V _{in} =5V, I ₁ +I ₂ combined		12.0		22.5	A
Input Voltage Range	$V_{\rm in}$	$0.1A \le I_o \le I_{max}$ PT693	PT6935 36/PT6937	3.1 4.5	_	5.5 5.5	V
Output Voltage Tolerance	$\Delta { m V_o}$	V_{in} = +5V, I_o = I_{TYP} both outputs -40°C $\leq T_a \leq$ +85°C		Vo-0.03	_	Vo+0.03	V
Line Regulation	Reg _{line}	Over specified V_{in} range, $I_o = I_{TYP}$	$V_1 = 3.3V$ $V_2 = 2.5V$	_	±5 ±2	±10 ±5	mV
			V ₁ =2.5V V ₂ =1.8V	_	±5 ±2	±10 ±5	mV
Load Regulation	Reg _{load}	$V_{\rm in}$ = +5V, $0.1 \le I_{\rm o} \le I_{\rm TYP}$	$V_1 = 3.3V$ $V_2 = 2.5V$	_	±5 ±5	±10 ±10	mV
			V ₁ =2.5V V ₂ =1.8V	_	±5 ±5	±10 ±10	mV
V _o Ripple/Noise	V _n	$V_{in} = +5V$, $I_o = I_{TYP}$	$V_1 = 3.3V$ $V_2 = 2.5V$	_	35 35	_	mV
		-	V ₁ =2.5V V ₂ =1.8V	_	35 35	_	mV
Transient Response with C ₂ = 330µF	${ m t_{tr} \over V_{os}}$	I_{o} step between $0.5xI_{TYP}$ and I_{TYP} V_{o} over/undershoot	$V_1 = 3.3V$ $V_2 = 2.5V$	=	60 60 60		μSec mV

(Continued)

^{*}Note: V₁out and V₂out can be pin-strapped to another voltage. See related application note on output voltage adjustment.

11 Amp 5V/3.3V Input Dual Output Integrated Switching Regulator

Specifications (From previous page)

Characteristics			F	T6935 SERIE	S	
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Switching Frequency	f_{\circ}	$\begin{array}{l} 3.1 V \leq V_{in} \leq 5.5 V \\ 0.1 A \leq I_o \leq I_{TYP} \end{array}$	300	350	400	kHz
Absolute Maximum Operating Temperature Range	Ta	_	-40 (5)	_	+85 (6)	°C
Storage Temperature	T_s	_	-40	_	+125	°C
Weight	_	Vertical/Horizontal	_	29	_	grams

Notes: (1) The PT6935 series requires a 560µF electrolytic capacitor on the input and a 330µF electrolytic capacitor on the output for proper operation in all applications.

- (2) Iomin current of 0.1A can be divided between both output, V1 or V2. The ISR will operate down to no-load with reduced specifications.
- (3) The typical current is the load that can be simulataneously drawn from both outputs under the stated operating conditions.
- (4) The maximum specified current is that which can be drawn from the applicable output with the other output unloaded. The total current on both outputs must never exceed the maximum load current specified for V10ut. If either output voltage is adjusted, consult the factory for guidance.
- (5) For operating temperatures below 0°, Cin and Cout must have stable characteristics. Use either tantalum or Oscon® capacitors.
- (6) See Safe Operating Area curves, or contact the factory for the appropriate derating.

TYPICAL CHARACTERISTICS Safe Operating Area @V_{IN}=5.0V (See Note B) Performance, V_{IN} =5V -Unless specified, (See Note A) Efficiency Vs I₁out, (V_{IN} =3.3V for PT6935) PT6935; I2out = 2.5A Fixed 90.0 80.0 ဝ့ Airflow 200LFM PT6935 60.0 120LFM PT6936 PT6937 50.0 Nat conv 40.0 30.0 55 50 2.0 4.0 5.0 6.0 5 1.0 3.0 7.0 0.0 I₁ out (A) [I₂ fixed at I_{2 TYP}] PT6936; I2out = 3.0A Fixed V₁out Ripple Vs I₁out 70 70.0 Airflow ≥ 50 200LFM PT6935 60.0 120LFM PT6936 60LFM 50.0 Nat conv 20 30.0 10 20.0 4.0 I₁ out (A) [I₂ fixed at I_{2 TYP}] I₁ out (A) Power Dissipation Vs I₁out PT6937; I2out = 2.0A Fixed Airflow 200LFM Pd - Watts PT6935 60.0 120LFM -PT6936 60LFM PT6937 50.0 Nat conv 40.0 30.0 20.0 4.0 6.0 0.0 2.0 8.0

Note A: Performance graphs have been developed from actual products tested at 25°C. This data is considered typical data for the ISR.

Note B: SOA curves represent the conditions at which internal components are at or below the manufacturer's maximum operating conditions

I₁ out (A) [I₂ fixed at I_{2 TYP}]

I₁ out (A)

PT6935, PT6936, PT6937

Adjusting the Output Voltage of the PT6935 Dual Output Voltage ISRs

Each output voltage from the PT6935 series of ISRs can be independently adjusted higher or lower than the factory trimmed pre-set voltage. V_1 (the voltage at V_1 out), or V_2 (the voltage at V_2 out) may each be adjusted either up or down using a single external resistor 1 . Table 1 gives the adjustment range for both V_1 and V_2 for each model in the series as V_a (min) and V_a (max). Note that V_2 must always be lower than V_1 .

V₁ Adjust Up: To increase the output, add a resistor R4 between pin 16 (V₁ Adjust) and pins 7-11 (GND) ¹.

 V_1 Adjust Down: Add a resistor (R3), between pin 16 (V_1 Adjust) and pin 1 (V_1 Remote Sense) ¹.

V₂ Adjust Up: Add a resistor R2 between pin 23 (V₂ Adjust) and pins 7-11 (GND) ¹.

V₂ Adjust Down: Add a resistor (R1) between pin 23 (V₂ Adjust) and pin 22 (V₂ Remote Sense) ¹.

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor.

Notes:

- 1. Use only a single 1% resistor in either the (R3) or R4 location to adjust V_1 , and in the (R1) or R2 location to adjust V_2 . Place the resistor as close to the ISR as possible.
- 2. V_2 must always be at least 0.2V lower than V_1 .
- 3. Both the V_1 and V_2 may be adjusted down to an alternative bus voltage by making, (R3) or (R1) respectively, a zero ohm link. Refer to the Table 1 footnotes for guidance.
- Adjusting the V₁out output voltage of the PT6935 (2.5V/1.8V model) higher than the factory pretrimmed output voltage may increase the minimum

input voltage specified for the part. This model must comply with the following requirements.

PT6935:

 $V_{in}(min) = (V_a + 0.6)V$ or 3.1V, whichever is greater.

- Never connect capacitors to either the V₁ Adjust or V₂ Adjust pins. Any capacitance added to these control pins will affect the stability of the respective regulated output.
- Adjusting either voltage (V₁ or V₂) may increase the power dissipation in the regulator, and change the maximum current available at either output. Consult the factory for application assistance.

The adjust up and adjust down resistor values can also be calculated using the following formulas. Be sure to select the correct formula parameter from Table 1 for the output and model being adjusted.

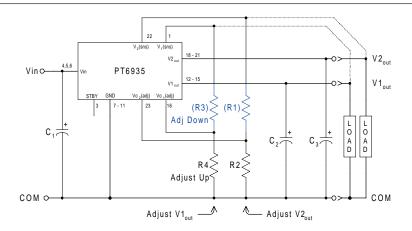
$$(R_1) \ or \ (R_3) \ \ = \ \ \frac{10 \ (V_a - V_r)}{V_o - V_a} \ \ - R_s \ \ k \Omega$$

$$(R_2) \text{ or } (R_4) = \frac{10 \cdot V_r}{V_3 - V_0} - R_s \qquad k\Omega$$

Where: V_0 = Original output voltage, $(V_1 \text{ or } V_2)$

V_a = Adjusted output voltage

 V_r = The reference voltage from Table 1 R_s = The series resistance from Table 1


Table 1

Output Bus V1 out V2 out (2) Series Pt # PT6935 PT6936/37 PT6935/37 PT6936 Adj. Resistor (R3)/R4 (R3)/R4 (R1)/R2 (R1)/R2 Vo(nom) 2.5V 3.3V 1.8V 2.5V Va(min) 1.8V* 2.5V* 1.5V† 1.8V† Va(max) 3.6V (4) 3.6V 2.4V 3.0 Vr 1.27V 1.27V 1.0V 1.0V R _S (kΩ) 7.5 15.4 16.9 11.5	PT6920 ADJUS	220 ADJUSTMENT RANGE AND FORMULA PARAMETERS						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Bus	V ₁ (out	V ₂ ou	ut (2)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Series Pt #	PT6935	PT6936/37	PT6935/37	PT6936			
Va(min) $1.8V^*$ $2.5V^*$ $1.5V^{\dagger}$ $1.8V^{\dagger}$ Va(max) $3.6V(4)$ $3.6V$ $2.4V$ 3.0 Vr $1.27V$ $1.27V$ $1.0V$ $1.0V$	Adj. Resistor	(R3)/R4	(R3)/R4	(R1)/R2	(R1)/R2			
Va(max) 3.6V (4) 3.6V 2.4V 3.0 Vr 1.27V 1.27V 1.0V 1.0V	V ₀ (nom)	2.5V	3.3V	1.8V	2.5V			
Vr 1.27V 1.27V 1.0V 1.0V	Va(min)	1.8V*	2.5V*	1.5V†	1.8V†			
	Va(max)	3.6V(4)	3.6V	2.4V	3.0			
R_S (kΩ) 7.5 15.4 16.9 11.5	Vr	1.27V	1.27V	1.0V	1.0V			
	R _S (kΩ)	7.5	15.4	16.9	11.5			

^{*(}R3) =Zero-ohm link (3)

 \dagger (R1) =Zero-ohm link (3)

Figure 1

Application Notes continued

PT6935, PT6936, PT6937

Table 2

PT6935 ADJUSTMENT RESISTOR VALUES					
Output Bus	V ₁ out		V ₂ out		
Series Pt #	PT6935 PT6936/37		PT6935/37 PT69		
Adj. Resistor	(R3)/R4	(R3)/R4	(R1)/R2	(R1)/R2	
/ ₀ (nom)	2.5V	3.3V	1.8V	2.5V	
/a(req'd)					
1.5			(0.0) k Ω		
1.55			(5.1)kΩ		
1.6		-	(13.1)kΩ		
1.65		-	(26.4)kΩ		
1.7			(53.1)kΩ		
1.75			(133.0) k Ω		
1.8	(0.0)			(0.0) k Ω	
1.85	(1.4) k Ω		183.0kΩ	(1.6) k Ω	
1.9	(3.0) k Ω		83.1kΩ	(3.5) k Ω	
1.95	(4.9) k Ω		49.8kΩ	(5.8) k Ω	
2.0	(7.1) k Ω		33.1kΩ	(8.5) k Ω	
2.05	(9.8) k Ω		23.1kΩ	(11.8) k Ω	
2.1	(13.3) k Ω		16.4kΩ	(16.0) k Ω	
2.15	(17.6) k Ω		11.7kΩ	(21.4)kΩ	
2.2	(23.5) k Ω		8.1kΩ	(28.5) k Ω	
2.25	(31.7) k Ω		5.3kΩ	(38.5) k Ω	
2.3	(44.0) k Ω		3.1kΩ	(53.5) k Ω	
2.35	(64.5) k Ω		1.3kΩ	(78.5) k Ω	
2.4	(106.0) k Ω		0.0kΩ	(129.0) k Ω	
2.45	(229.0) k Ω			(279.0) k Ω	
2.5		(0.0) k Ω			
2.55	$247.0 \mathrm{k}\Omega$	(1.7) k Ω		$189.0 \mathrm{k}\Omega$	
2.6	$120.0 \mathrm{k}\Omega$	(3.6) k Ω		$88.5 \text{k}\Omega$	
2.65	$77.2 \mathrm{k}\Omega$	(5.8) k Ω		55.2kΩ	
2.7	$56.0 \mathrm{k}\Omega$	(8.4)kΩ		$38.5 \mathrm{k}\Omega$	
2.75	$43.3 \mathrm{k}\Omega$	(11.5) k Ω		$28.5 \mathrm{k}\Omega$	
2.8	$34.8 \mathrm{k}\Omega$	(15.2) k Ω		21.8kΩ	
2.85	$28.8 \mathrm{k}\Omega$	(19.7) k Ω		17.1kΩ	
2.9	24.3kΩ	(25.4)kΩ		13.5kΩ	
2.95	$20.7 \mathrm{k}\Omega$	(32.6)kΩ		$10.7 \mathrm{k}\Omega$	
3.0	$17.9 \mathrm{k}\Omega$	(42.3) k Ω		$8.5 \mathrm{k}\Omega$	
3.05	15.6kΩ	(55.8) k Ω			
3.1	$13.7 \mathrm{k}\Omega$	(76.1)kΩ			
3.15	12.0kΩ	(110.0)kΩ			
3.2	10.6kΩ	(178.0)kΩ			
3.25	9.4kΩ	(381.0) k Ω			
3.3	$8.4 \mathrm{k}\Omega$				
3.4	$6.6 \mathrm{k}\Omega$	112.0k			
3.5	$5.2 \mathrm{k}\Omega$	48.1k			
3.6	$4.1 \mathrm{k}\Omega$	26.9k			

R1/R3 = (Blue) R2/R4 = Black