

STRUCTURE Silicon Monolithic Integrated Circuit

PRODUCT NAME Main Power Supply For TFT-LCD Display Module

TYPE BD8150KVT

FEATURES 5 -channel outputs for TFT-LCD Display

11-channel OP-AMP included

●ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	LIMITS	UNIT
Power Supply Voltage	VCC	15	٧
Regulator Supply Voltage	REGVCC	15	٧
Driver Supply Voltage	PVCC	15	٧
Junction Temperature	Tjmax	125	°
Power Dissipation	Pd	1000*1	mW
Operating Temperature Range	Topr	-30~85	°
Storage Temperature Range	Tstg	-55 ∼1 50	$^{\circ}$

^{*1} Pd derated at 10mw/°C for temperatures above Ta=25°C, mounted on $70\times70\times1.6$ mm Glass-epoxy PCB.

●OPERATING CONDITIONS (Ta=-30°C~+85°C)

PARAMETER	SYMBOL	MIN	MAX	UNIT
Power Supply Voltage	VCC	2.7	13	٧
Regulator Supply Voltage	REGVCC	4.5	14.7	٧
Driver Supply Voltage	PVCC	2.7	13	٧

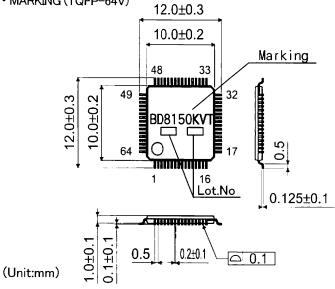
[★]This product is not designed for protection against radioactive rays.

Status of this document

The Japanese version of this document is the formal specification.

A customer may use this translation version only for a reference to help reading the formal version.

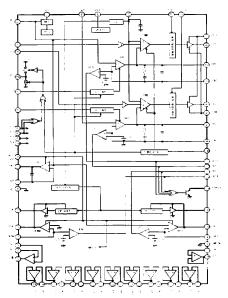
If there are any differences in translation version of this document, formal version takes priority.


[★]The product described in this specification is a strategic product(and/or Service) subject to COCOM regulations. It should not be exported without Authorization from the appropriate government.

MHON

●ELECTRICAL CHARACTERISTICS (Unless otherwise specified VCC=5V,REGVCC=12V,Ta=25°C)

	LIMIT				- 1		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS	
(ERR AMP1, 2 BLOCK)							
Input Offset Voltage	Vos12	-10	0	10	mV		
Feed Back Voltage	FB1	1.225	1.25	1.275	٧	ERRAMP1 Only	
(PWM&DRV BLOCK)			•	-	•		
Sink Current	lpsk12	70	130	200	mA	GD1, 2=5V	
Source Current	Ipsc12	-245	-160	-85	mA	GD1, 2=0V	
(OSCILLATOR BLOCK)							
Switching Frequency	Fsw12	0.8	1.0	1.2	MHz		
(CHARGE PUMP DRIVER EF	RR AMP3,	4 BLOCK)	•				
Food Pook Voltage	FB3	1.212	1.25	1.288	٧		
Feed Back Voltage	FB4	_	0	_	٧		
(DRIVER BLOCK)							
Switching Frequency	Fsw34	200	250	300	kHz		
(LOW DROPOUT REGULATOR	7)						
Feed Back Voltage	FBR	1.237	1.25	1.263	V	Buffer, Io=-10mA	
Short Current	lo		-130	-50	mA	VREG=0V	
Load Regulation	RegL	_	1	10	mV	I o=1 →10mA	
(OP-AMP BLOCK)						-	
Input Offset Voltage	Voso	-10	0	10	mV		
Drive Current	loo	20	50	_	mA		
Load Regulation	△Vo		1	10	mV	o=+1 ~-1 mA	
Output Voltage High	Voho	REGVCC-1.0	REGVCC-0.8	_	٧	lo=-1mA, IN+=REGVCC	
Output Voltage Low	Vohl	_	0.1	0.16	٧	lo=1mA, IN+=0V	
(BG BLOCK)							
BG Voltage	Vref	1.225	1.250	1.275	٧	Io=-0.1mA	
Short Current	lovr	0.2	1_	_	mA	BG=0V	
(VREF17 BLOCK)							
VREF17 Voltage	Vref17	1.666	1.700	1.734	٧	Io=-0.1mA	
Short Current	lovr17	0.2	1		mA	VREF17=0V	
(UNDER VOLTAGE LOCK OUT BLOCK)							
Threshold Voltage	Vuvlo	2.327	2.45	2.573	٧		
(SUPPLY CUPRENT)							
Stand-by Current	Istb		0	10	uA		
Average Supply Current	Icc	1.1	2	2.9	mA		


●PHYSICAL DIMENSION • MARKING (TQFP-64V)

Rev.B

ROHM

●BLOCK DIAGRAM

*Please refer to Technical note concerning application circuit, and etc.

● PIN NO. & FUNCTION TABLE

PIN	TPININAMET FINCTION		PIN NO.	PIN NAME	FUNCTION	
NO.						
1	DET1	DC/DC detector output 1	33	SCP	Connect timer latch capacitor	
2	DET2	DC/DC detector output 2	34	ENABLE	All channel output enable	
3	DET3	Charge pump detector output 3	35	NON4	Charge pump feed back input 4	
4	DET4	Charge pump detector output 4	36	FB4	Charge pump E/A output 4	
5	INO	Buffer amp 0 input	37	CD4	Charge pump driver output 4	
6	IN1	Buffer amp 1 input	38	CD3	Charge pump driver output 3	
7	IN2	Buffer amp 2 input	39	FB3	Charge pump E/A output 3	
8	IN3	Buffer amp 3 input	40	1 NV 3	Charge pump feed back input 3	
9	I N4	Buffer amp 4 input	41	BG	Reference voltage monitor	
10	1 N 5	Buffer amp 5 input	42	VREF17	1.7V Reference Voltage	
11	IN6	Buffer amp 6 input	43	NON2	DC/DC E/A non inverting input 2	
12	IN7	Buffer amp 7 input	44	INV2	DC/DC E/A inverting input 2	
13	1N8	Buffer amp 8 input	45	FB2	DC/DC E/A output 2	
14	IN9	Buffer amp 9 input	46	GND	Ground	
15	IN+	Op-amp non inverting input	47	PGND	Power ground	
16	IN-	Op-amp inverting input	48	GD2	DC/DC driver output 2	
17	AMPGND	Buffer amp and op-amp ground	49	GD1	DC/DC driver output 1	
18	COM	Op-amp output	50	PVCC	Power VCC supply	
19	00Т9	Buffer amp 9 output	51	VCC	VCC supply	
20	OUT8	Buffer amp 8 output	52	FB1	DC/DC E/A output 1	
21	0017	Buffer amp 7 output	53	INV1	DC/DC E/A inverting input 1	
22	OUT6	Buffer amp 6 output	54	PG	Pch FET switch driver output	
23	OUT5	Buffer amp 5 output	55	SS1	Connect soft start capacitor 1	
24	OUT4	Buffer amp 4 output	56	SS2	Connect soft start capacitor 2	
25	OUT3	Buffer amp 3 output	57	UDSEL1	Step up/down select switch 1	
26	OUT2	Buffer amp 2 output	58	UDSEL2	Step up/down select switch 2	
27	OUT1	Buffer amp 1 output	59	DTC1	Dead time control voltage input1	
28	ОТО	Buffer amp 0 output	60	DTC2	Dead time control voltage input2	
29	REGVCC	Charge pump, Regulator, op-amp and buffer amp power supply	61	CTL4	Charge pump control switch 4	
30	VREG	Regulator output	62	CTL3	Charge pump control switch 3	
31	INV5	Regulator negative feed back input	63	CTL2	DC/DC control switch 2	
32	СТ	Ramp wave monitor	64	CTL1	DC/DC control switch 1	

Operation Notes

1. Absolute maximum range

This product are produced with strict quality control, but might be destroyed in using beyond absolute maximum ratings. Open IC destroyed a failure mode cannot be defined (like Short mode, or Open mode). Therefore physical security countermeasure, like fuse, is to be given when a specified mode to be beyond absolute maximum ratings is considered.

2. Ground potential

GND terminal should be a lowest voltage potential every state.

Please make sure all pins which is over ground even if include transient feature.

3. Setting of heat

Use a setting of heat that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions..

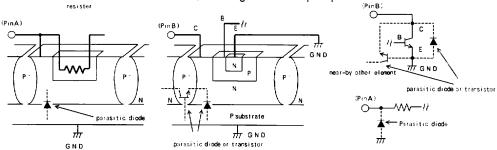
4. Short Circuit between Terminal and Soldering

Don't short-circuit between Output pin and VDD pin, Output pin and GND pin, or VDD pin and GND pin. When soldering the IC on circuit board, please be unusually cautious about the orientation and the position of the IC. When the orientation is mistaken the IC may be destroyed.

5. Electromagnetic Field

Mal-function may happen when the device is used in the strong electromagnetic field.

6. Ground wiring patterns


When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring patterns of any external components.

7. This IC is a monolithic IC which has P+ isolation in the P substrate and between the various pins.

A P-N junction is formed from this P layer and the N layer of each pin.

For example, when a resistor and a transistor is connected to a pin.

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly, you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin.

SIMPLIFIED STRUCTURE OFBI-POLAR IC

8. Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available,
please contact your nearest sales office.

Please contact our sales offices for details;

```
U.S.A / San Diego
                        TEL: +1(858)625-3630
                                                 FAX: +1(858)625-3670
       Atlanta
                        TEL: +1(770)754-5972
                                                 FAX: +1(770)754-0691
       Dallas
                        TEL: +1(972)312-8818
                                                 FAX: +1(972)312-0330
Germany / Dusseldorf
                        TEL: +49(2154)9210
                                                 FAX: +49(2154)921400
United Kingdom / London TEL: +44(1)908-282-666
                                                 FAX: +44(1)908-282-528
France / Paris
                        TEL: +33(0)1 56 97 30 60 FAX: +33(0) 1 56 97 30 80
China / Hong Kong
                        TEL: +852(2)740-6262
                                                 FAX: +852(2)375-8971
       Shanghai
                        TEL: +86(21)6279-2727
                                                 FAX: +86(21)6247-2066
       Dilian
                        TEL: +86(411)8230-8549
                                                 FAX: +86(411)8230-8537
       Beijing
                        TEL: +86(10)8525-2483
                                                 FAX: +86(10)8525-2489
Taiwan / Taipei
                        TEL: +866(2)2500-6956
                                                 FAX: +866(2)2503-2869
Korea / Seoul
                        TEL: +82(2)8182-700
                                                 FAX: +82(2)8182-715
Singapore
                        TEL: +65-6332-2322
                                                 FAX: +65-6332-5662
Malaysia / Kuala Lumpur
                        TEL: +60(3)7958-8355
                                                 FAX: +60(3)7958-8377
Philippines / Manila
                        TEL: +63(2)807-6872
                                                 FAX: +63(2)809-1422
Thailand / Bangkok
                        TEL: +66(2)254-4890
                                                 FAX: +66(2)256-6334
```

Japan / (Internal Sales)

Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082

TEL: +81(3)5203-0321 FAX: +81(3)5203-0300

Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575

TEL: +81(45)476-2131 FAX: +81(45)476-2128

Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya, Aichi 450-0002

TEL: +81(52)581-8521 FAX: +81(52)561-2173

Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku,

Kyoto 600-8216

TEL: +81(75)311-2121 FAX: +81(75)314-6559

(Contact address for overseas customers in Japan)

Yokohama TEL: +81(45)476-9270 FAX: +81(045)476-9271