Type 2N1893 Geometry 4500 Polarity NPN **Qual Level: JAN - JANTXV** **Generic Part Number:** 2N1893 REF: MIL-PRF-19500/182 ## Features: - General-purpose low-power NPN silicon transistor. - Housed in TO-5 case. - Also available in chip form using the 4500 chip geometry. - The Min and Max limits shown are per MIL-PRF-19500/182 which Semicoa meets in all cases. ## Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise specified | Rating | Symbol | Rating | Unit | | |--|------------------|-------------|-------|--| | Collector-Emitter Voltage | V_{CEO} | 80 | V | | | Collector-Base Voltage | V_{CBO} | 120 | V | | | Emitter-Base Voltage | V _{EBO} | 7.0 | V | | | Collector - Emitter Voltage, R _{BE} = 10 Ohms | V _{CER} | 100 | V | | | Collector Current, Continuous | I _C | 500 | mA | | | Power Dissipation, T _A = 25°C | P _T | 0.8 | mW | | | Derate above 25°C | • • | 4.57 | mW/°C | | | Power Dissipation, T _C = 25°C | P_{T} | 3.0 | mW | | | Derate above 25°C | . 1 | 17.2 | mW/°C | | | Operating Junction Temperature | TJ | -55 to +200 | °C | | ## **Electrical Characteristics** $T_C = 25^{\circ}C$ unless otherwise specified | OFF Characteristics | Symbol | Min | Max | Unit | |---|----------------------|-----|-----|------| | Collector-Base Breakdown Voltage $I_C = 100 \mu A$, pulsed | V _{(BR)CBO} | 120 | | V | | Collector-Emitter Breakdown Voltage $I_C = 30$ mA, pulsed | V _{(BR)CEO} | 80 | | V | | Emitter-Base Breakdown Voltage $I_E = 10 \mu A$ | V _{(BR)EBO} | 7.0 | | | | Collector-Base Cutoff Current
V _{CB} = 90 V | I _{CBO1} | | 10 | nA | | Collector-Base Cutoff Current
$V_{CB} = 90 \text{ V}, T_A = 150^{\circ}\text{C}$ | I _{CBO2} | | 15 | μΑ | | Emitter-Base Cutoff Current
V _{EB} = 6 V | I _{EBO} | | 10 | nA | | ON Characteristics | Symbol | Min | Max | Unit | |---|------------------|-----|-----|------| | Forwad GrentTanterRtio | | | | | | $I_C = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}, \text{ pulsed}$ | h _{FE1} | 20 | | | | $I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, \text{ pulsed}$ | h_{FE2} | 35 | | | | $I_C = 150$ mA, $V_{CE} = 10$ V, pulsed | h_{FE3} | 40 | 120 | | | Base-Emitter Saturation Voltage | | | | | | $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}, \text{ pulsed}$ | $V_{BE(sat)1}$ | | 1.3 | V dc | | Collector-Emitter Saturation Voltage | | | | | | IC = 150 mA, IB = 15 mA, pulsed | $V_{CE(sat)1}$ | | 5.0 | V dc | | Small Signal Characteristics | Symbol | Min | Max | Unit | |--|--------------------|-----|----------------------|-------| | Magnitude of Common Emitter, Small Signal, Short Circuit Forward Current Transfer Ratio $V_{CE} = 5 \text{ V, } I_C = 1 \text{ mA, } f = 20 \text{ MHz}$ | h _{FE} | 3.0 | 10 | | | Small Signal, Short Circuit Forward Current Transfer Ratio $V_{CE} = 5 \text{ V}, I_C = 5 \text{ mA}$ | h _{FE} | 35 | 100 | | | Small Signal, Short Circuit Forward Current Transfer Ratio $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}, f = 1 \text{ kHz}$ | h _{FE} | 45 | | | | Small Signal, Short Circuit Input Impedance $V_{CB} = 10 \text{ V}, I_{C} = 5 \text{ mA}$ | hib | 4.0 | 8.0 | Ohms | | Small Signal, Open Circuit Output Admittance $V_{CB} = 10 \text{ V}, I_{C} = 5.0 \text{ mA}$ | hob | 0 | 0.5 | μOhms | | Small signal, Open Circuit reverse Voltage Transfer Ratio $V_{CB} = 10 \text{ V}, I_C = 5 \text{ mA}$ | hrb | | 1.5x10 ⁻⁴ | | | Open Circuit Output Capacitance
V _{CB} = 10 V, I _E = 0, 100 kHz < f < 1 MHz | C _{OBO} | 5.0 | 15 | pF | | Pulse Response
See Test Condition in MIL-S-19500/182D | $t_{on} + t_{off}$ | | 30 | ns |