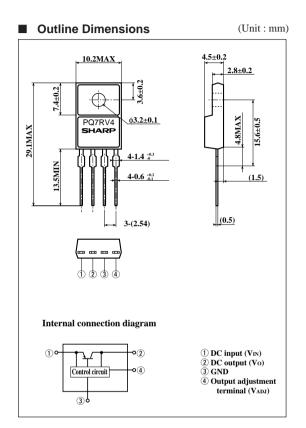
PQ7RV4

Variable Output (1.5 to 7V), 4.6A Output Low Power-loss Voltage Regulator

Features


• Low power-loss

(Dropout voltage : MAX.0.5V at Io=4.0A)

- (Dropout voltage : MAX.1.0V at Io=4.6A)
- TO-220 package
- 1.5V to 7V/4.6A output type
- Low operating voltage (Minimum operating voltage:3.0V)
- High-precision reference voltage type Reference voltage precision : ±2.0%
- Built-in ON/OFF control function
- Built-in overcurrent protection, overheat protection function

Applications

• Power supplies for various electronic equipment such as personal computers

Absolute Maximum Ratings

Absolute Maximum Ratings			(Ta=25°C)	
Parameter	Symbol	Rating	Unit	
*1 Input voltage	VIN	10	V	
*1 ON/OFF control terminal voltage	VADJ	5	V	
Output current	Io	4.6	Α	
*2 D	PD1	1.8	***	
*2 Power dissipation	PD2	18	W	
*3 Junction temperature	Tj	150	•C	
Operating temperature	Topr	-20 to +80	•C	
Storage temperature	Tstg	-40 to +150	•C	
Soldering temperature	Tsol	260 (For 10s)	•C	

*1 All are open except GND and applicable terminals.

*2 PD1: No heat sink, PD2: With infinite heat sink

*3 Overheat protection may operate at 125=<Tj=<150°C.

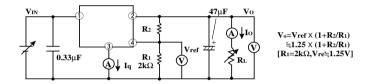
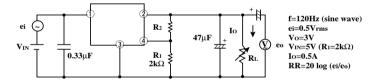
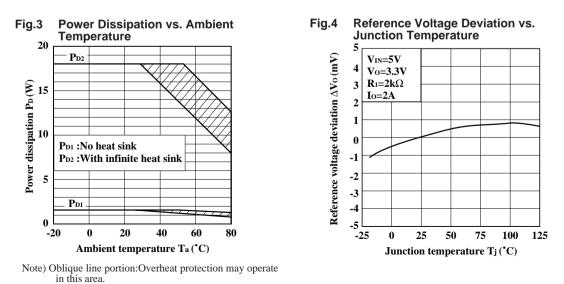
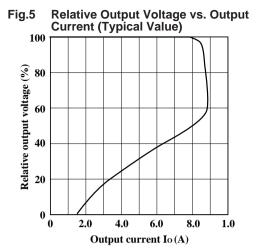
 \cdot Please refer to the chapter" Handling Precautions ".

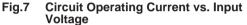
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	VIN	-	3.0	-	10.0	V
Output voltage	Vo	-	1.5	-	7.0	V
Load regulation	RegL	Io=5mA to 4.6A	-	0.5	2.0	%
Line regulation	RegI	VIN=4 to 10V	-	0.5	2.5	%
Reference voltage	Vref	-	1.225	1.25	1.275	V
Temperature coefficient of reference voltage	TcVref	Tj=0 to125°C	-	±0.01	-	%/ ° C
Ripple rejection	RR	-	45	55	-	dB
Dropout voltage(1)	Vi-0(1)	*4, Io=4.0A	-	-	0.5	V
Dropout voltage(2)	Vi-0(2)	*4, Io=4.6A	-	-	1.0	V
Quiescent current	Iq	Io=0A	-	-	17	mA

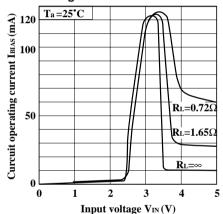
Electrical Characteristics	(Unless otherwise specified, conditions shall be VIN=5V,Vo=3.3V(R1=2kΩ),Io=2.0A,Ta=25 [•] C)
----------------------------	---

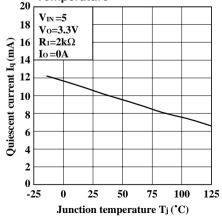
*4 Input voltage shall be the value when output voltage is 95% in comparison with the initial value.

Fig.1 Test Circuit


Fig.2 Test circuit for Ripple Rejection




SHARP

SHARP

Fig.6 Output Voltage vs. Input Voltage

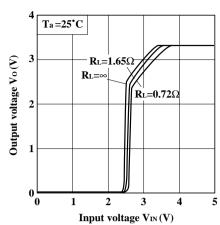


Fig.8 Dropout Voltage vs. Junction Temperature

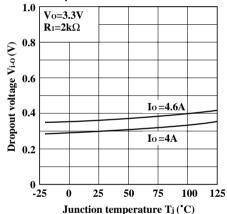
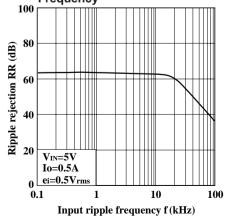
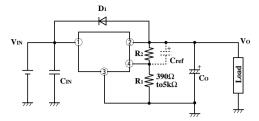




Fig.10 Ripple Rejection vs. Input Ripple Frequency

Standard Connection

- D1 : This device is necessary to protect the element from damage when reverse voltage may be applied to the regulator in case of input short-circuiting.
- Cref : This device is necessary when it is required to enhance the ripple rejection or to delay the output start-up time. Otherwise, it is not necessary.

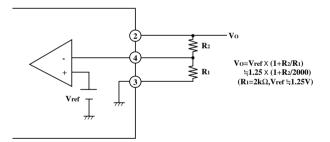
(Care must be taken since Cref may raise the gain, facilitating oscillation.)

* The output start-up time si proportional to Cref X R2.

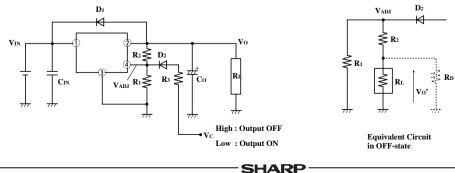
CIN,CO : Be sure to mount the devices CIN and Co as close to the device terminal as possible so as to prevent oscillation.

The standard specification of C_{IN} and C_0 is 0.33μ F and 47μ F, respectively. However, adjust them as necessary after checking.

R1,R2 : These devices are necessary to set the output voltage. The output voltage Vo is given by the following formula:


Vo=Vref X (1+R2/R1)

(Vref is 1.25V TYP)


The standard value of R1 is $2k\Omega$. But value up to 390Ω to $5k\Omega$ does not cause any trouble.

Asjustment of Output Voltage

Output voltage is able to set (1.5V to 7V) when resistors R_{1} , R_{2} are attached to (2), (3), (4) terminals. As for the external resistors to set output voltage, refer to the following figure.

ON/OFF Operation

ON/OFF operation is available by mounting externally D_2 and R_3 .

When V_{ADJ} is forcibly raised above V_{ref} (1.25V TYP) by applying the external signal, the output is turned off (pass transistor of regulator is turned off). When the output is OFF, V_{ADJ} must be higher than V_{ref} MAX., and at the same time must be lower than maximum rating 5V.

In OFF-state, the load current flows to RL from VADJ through R2. Therefore the value of R2 must be as high as possible.

In OFF state, as shown below,voltage

 $Vo'=V_{ADJ} X RL/(R_L+R_2)$

occurs at the load. OFF-state equivalent circuit R_1 up to $5k\Omega$ is allowed.

Select as high value of R_L and R_2 as possible in this range. In some case, as output voltage is getting lower (Vo<1V), impedance of load resistance rises. In such condition, it is sometimes impossible to obtain the minimum value of Vo'. So add the dummy resistance indicated by R_D in the figure to the circuit parallel to the load.