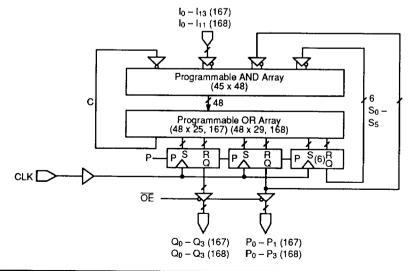
PLS167-33, PLSCE167H-33 PLS168-33, PLSCE168H-33

24-Pin TTL/CMOS Programmable Logic Sequencers

DISTINCTIVE CHARACTERISTICS

- Field-programmable replacement for sequential control logic
- Advanced Mealy state machine/sequencer architecture
- Programmable AND/programmable OR array for flexibility
- Full drive: 24 mA loL, three-state outputs
- Dedicated hardware features to enhance testability
 - Diagnostic Mode access to buried state register
 - Register Preload and Power-up Preset of all flip-flops

- User-programmable pin for asynchronous flip-flop Preset/Output Enable
- Automatic "Hold" state via S-R flip-flops
- Security bit hides proprietary designs from competitors
- Supported by PALASM® software and standard PLD programmers
- Available in 24-pin plastic SKINNYDIP[®] and 28-pin PLCC packages
- Fabricated with high-performance bipolar and electrically erasable CMOS technology

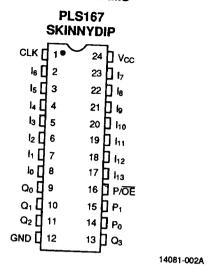

GENERAL DESCRIPTION

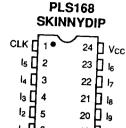
The PLS167 and PLS168 are field-programmable replacements for sequential logic. The devices function as Mealy state machines with a registered output. The PLS utilizes the familiar AND/OR PLA logic structure to implement sum-of-product equations. Both arrays are user-programmable to implement transition terms causing changes in the internal state register or output register. The PLS167/8-33 devices are fabricated in Advanced Micro Devices' advanced oxide-isolated bipolar process. The PLSCE167/8H-37 devices are fabricated

in a high-speed, EE CMOS process; they offer significant power improvement (I_{CC} of 100 mA) over competing parts.

The PLS devices are fully supported by industry-standard CAD tools, including the PALASM design software package. Device programming is accomplished by using standard PLD programmers.

BLOCK DIAGRAM

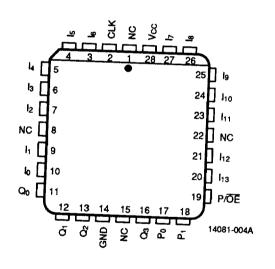

14081-001A

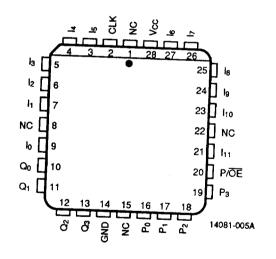

PALASM and SKINNYDIP are registered trademarks of Advanced Micro Devices.

This part is covered by various U.S. and foreign patents owned by Advanced Micro Devices.

Publication # 14081 Rev. A Amendment /0 Issue Date: January 1990

CONNECTION DIAGRAMS




It 🛮 6 [] I10 19 ωП 7 D 111 18 Q₀ [8 17 D P/OE П Q_1 9 16 ∏ P3 П Q_2 10 15 [] P2 Q3 [] 11 Π_{P_1} 14 GND [] 12 13 🛮 Po

14081-003A

PLCC

PLCC

PIN DESIGNATIONS

CLK Output/state register clock

GND Ground

I Inputs to AND array

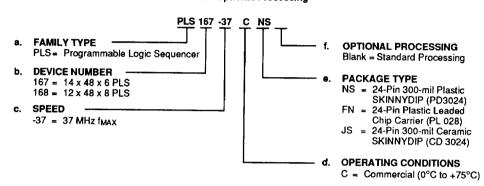
P/OE Programmable output/state register Programmable asynchronous function pin;

default is active-high Preset (all registers

go HIGH), programmed is active-low

Output Enable

Q Output register outputs


Vcc Supply Voltage

ORDERING INFORMATION

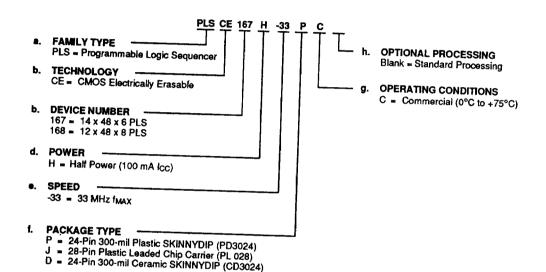
Commercial Products (Bipolar Only)

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

a. Family Type
b. Device Number
c. Speed
d. Operating Conditions
e Package Type
f. Optional Processing

Valid Combinations						
PLS167-37	0110 0511 010					
PLS168-37	CNS, CFN, CJS					

Valid Combinations


The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

Note: Marked with MMI logo.

ORDERING INFORMATION **Commercial Products (CMOS Only)**

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

- a. Family Type
- b. Technology
- c. Device Number
- d. Power
- e. Speed
- f. Package Type
- g. Operating Conditions h. Optional Processing

Valid Combinations PLSCE167H-33 PC, JC, DC PLSCE168H-33

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

Note: Marked with AMD logo.

FUNCTIONAL DESCRIPTION

State Machine Implementation

State machines contain conditional input logic, state memory and output generation logic. The PLS device is built around a programmable AND/OR logic array which serves as both conditional input and output generation logic. Forty-eight product or transition terms are found in the AND array. The AND array is driven from several sources: there are twelve to fourteen external inputs, six internal feedback signals from the buried state registers, two to four programmable registers, and the complement term.

The OR array drives the output registers, programmable registers, buried state registers, and the complement array term. The PLS device offers six to eight output registers and six buried state registers.

Architectural Details

Part Number	Pins	Inputs	Flip-Flops	Outputs
PLS167	24	14	12	6
PLS168	24	12	14	8

State and Output Registers

The state and output registers are both implemented with edge-triggered S-R type flip-flops. If neither input is active, the flip-flop will retain its contents when clocked. This free "hold" state saves product terms. The registers may change only on the LOW-to-HIGH transition of the clock pulse. There are four output registers, two output/buried registers and six buried state registers on the PLS167 device, and two additional output/buried registers on the PLS168 device.

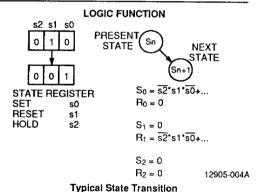
Logic Implementation

All transition terms can include True, False, or Don't Care states of the controlling variables. The OR array merges one or more product terms to generate the desired user logic functions for the output and next-state registers. This sharing of OR-terms minimizes the overall logic required to implement complicated control functions

Complement Array Term

An internal variable (C) known as the complement array term directly implements the "else" logic clause at any state. This often reduces the number of product terms required for a conditional "else" transition. The complement array can also be used for illegal state recovery and designing modulo counters.

Initialization


Starting the state machine in a known state is facilitated by power-up preset circuitry which unconditionally loads a "1" into each flip-flop during power-up or by using the asynchronous Preset function. Synchronous transitions to the initial state can be made by having an input be an OR termon all the state register S inputs, and ANDing its complement with all of the R logic terms. Whenever this input is active the machine will synchronously change to the state with all outputs high.

Output Enable

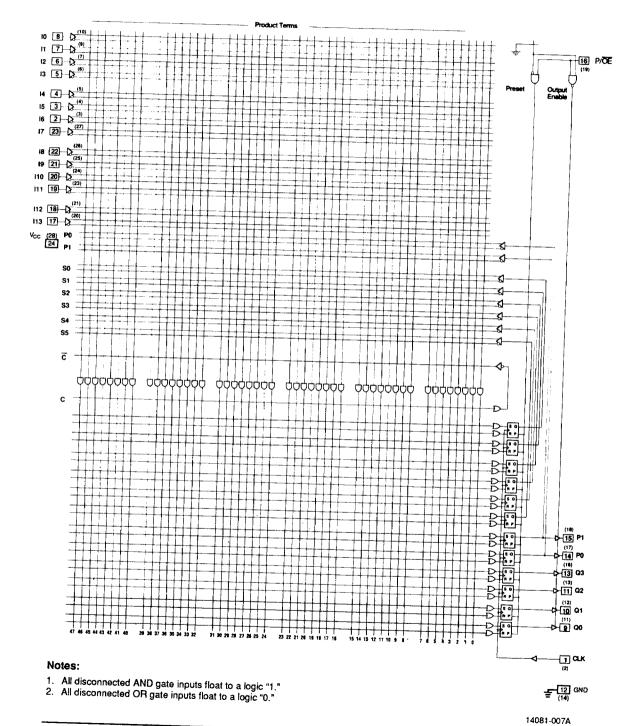
The Preset input can be converted to a three-state Output Enable function by an architecture bit. Expansion to larger control functions can be accommodated by connecting several PLS devices to a control bus and selectively enabling them to each handle a segment of the control algorithm. This user-programmable option is specified as an auxiliary equation in the design file or optionally by use of a keyword.

Typical Operation

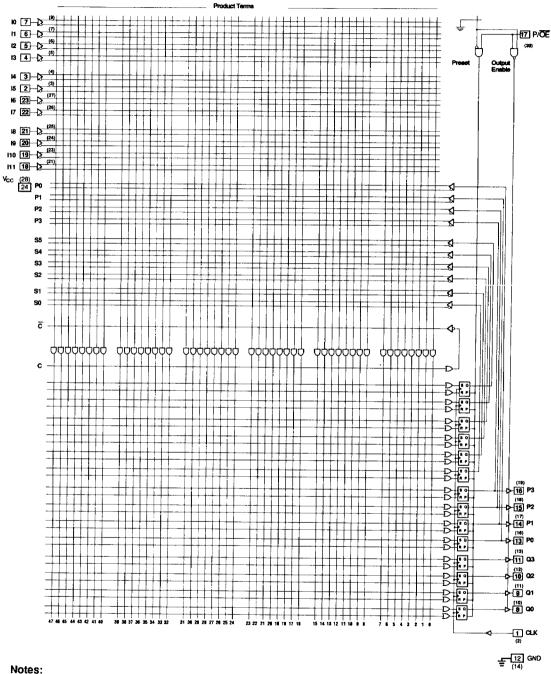
The details of device operation may be illustrated by the simple state transition indicated. The state register initially contains 010 and will become 001 after the next clock. For this to occur, state bit 0 must be set, state bit 1 must be reset and state bit 2 must hold its value. The transition term fragments listed produce this result. The current state (010) and produce a logic one. All other terms evaluate to a zero, producing the transition to state 001.

Security Bit

A security bit is provided on the PLS167/8 as a deterrent to unauthorized copying of the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a device programmer, securing proprietary designs from competitors.


On the PLSCE167/8, programming and verification are also defeated by the security bit. The bit can only be erased in conjunction with the array during an erase cycle. The security bit also prevents preload and observability.

Programming and Erasing


The PLS167/8 can be programmed on standard logic programmers. Approved programmers are listed in the Programmer Reference Guide.

The PLSCE167/8 may be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erase operation is required.

PLS167 LOGIC DIAGRAM DIP (PLCC) Pinout

PLS168 LOGIC DIAGRAM **DIP (PLCC) Pinout**

- 1. All disconnected AND gate inputs float to a logic "1."
- 2. All disconnected OR gate inputs float to a logic "0."

140B1-007A

ABSOLUTE MAXIMUM RATINGS

Storage Temperature -65°C to +150°C

Ambient Temperature with

Power Applied -55°C to +125°C

Supply Voltage with Respect

to Ground -0.5 V to +7.0 V

DC Input Voltage -0.5 V to +5.5 V

DC Output or I/O Pin

Voltage

-0.5 V to +5.5 V

DC Output Current +16 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (TA)

Operating in Free Air 0°C to +75°C

Supply Voltage (Vcc) with

Respect to Ground +4.75 V to +5.25 V

Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	1
V _{OH}	Output HIGH Voltage	IOH = -3.2 mA V _{IN} = V _{IH} Or V _{IL} V _{CC} = Min.	2.4	Max.	Uni
Vol	Output LOW Voltage	lot = 24 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min.		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0	5.5	V
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
Vı	Input Clamp Voltage	I _{IN} = -18 mA, V _{CC} = Min.		-1.2	V
liH	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = Max. (Note 2)		20	
lu.	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 2)		-250	μΑ
l _i	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		25	μА
Іохн	Off-State Output Leakage Current HIGH	Vout = 2.7 V, Vcc = Max., V _{IN} = V _{IL} or V _{IH} (Note 2)		20	μ Α μ Α
lozi	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. Vin = ViL or ViH (Note 2)		-20	μА
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (lout = 0 mA) V _{CC} = Max.		160	mA

- 1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
- 2. I/O pin leakage is the worst case of $I_{\rm IL}$ and $I_{\rm OZL}$ (or $I_{\rm IH}$ and $I_{\rm OZH}).$
- 3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Тур.	Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	Vcc = 5.0 V,	5	
Cout	Output Capacitance	V _{OUT} = 2.0 V	$T_A = +25^{\circ}C,$ $f = 1 \text{ MHz}$	8	pF

Note:

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			Min.	Max.	Unit		
ts	Setup Time	from Input or Feedba	ck to Clock	Without C	omplement Array	17	 	ns
t _{SC}	Setup Time t	from Input or Feedba	ck to Clock		plement Array	30		ns
tн	Hold Time					0	 	ns
tco	Clock to Out	put or Feedback					13	ns
t _{AP}	Asynchronou	is Preset to Output					15	ns
tapw	Asynchronou	Asynchronous Preset Width			10		ns	
tapr	Asynchronous Preset Recovery Time			8		ns		
twL	Cloud, Width	LOW				10		ns
twn	Clock Width	HIGH				10		ns
f _{MAX}	Maximum Frequency	External Feedback	Without Co Array	mplement	1/(ts + tco)	33		MHz
f _{MAXC}	(Note 3)	External Feedback	With Comp Array	plement	1/(tsc + tco)	23		MHz
tpzx	OE to Output	Enable					12	ns
t _{PXZ}	OE to Output	Disable					10	ns

- 2. See Switching Test Circuit for test conditions.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

-65°C to +150°C

Ambient Temperature with

Power Applied

-55°C to +125°C

Supply Voltage with Respect

to Ground

-0.5 V to +7.0 V

DC Input Voltage

-0.5 V to +7.0 V

DC Output or I/O Pin

Voltage

-0.5 V to +7.0 V

Static Discharge Voltage

Latchup Current

 $(T_A = 0^{\circ}C \text{ to } +75^{\circ}C)$

2001 V 100 mA

Stresses above those listed under Absolute Maximum Flatings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (TA)

Operating in Free Air

Supply Voltage (Vcc) with

Respect to Ground

+4.75 V to +5.25 V

0°C to +75°C

Operating Ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

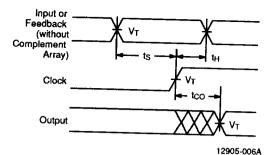
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Uni
VoH	Output HIGH Voltage	IOH = -3.2 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min.	2.4	IVIAX.	V
Vol	Output LOW Voltage	I _{OL} = 24 mA V _{IN} = V _{IH} or V _{IL} V _{CC} = Min.		0.5	V
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	V
lн	Input HIGH Leakage Current		<u> </u>	10	
l _{IL}	Input LOW Leakage Current	V _{IN} = 0 V, V _{CC} = Max. (Note 2)			μΑ
lozh	Off-State Output Leakage Current HIGH	Vout = 5.25 V, Vcc = Max., Vin = Vil or Vir (Note 2)		-10 10	μ Α μ Α
lozi	Off-State Output Leakage Current LOW	Vout = 0 V, V _{CC} = Max. V _{IN} = V _{IL} or V _{IH} (Note 2)		-10	μА
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	V _{IN} = 0 V, Outputs Open (I _{OUT} = 0 mA) V _{CC} = Max.		100	mA

- 1. These are absolute values with respect to the device ground and all overshoots due to system and tester noise are included.
- 2. I/O pin leakage is the worst case of I_{IL} and I_{OZL} (or I_{IH} and I_{OZH}).
- 3. Not more than one output should be tested at a time. Duration of the short-circuit test should not exceed one second. Vout = 0.5V has been chosen to avoid test problems caused by tester ground degradation.

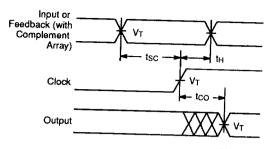
CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Тур.	Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	Vcc = 5.0 V,	5	
Соит	Output Capacitance	V _{OUT} = 2.0 V	$T_A = 25^{\circ}C$, $f = 1 \text{ MHz}$	8	pF

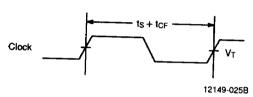
Note:

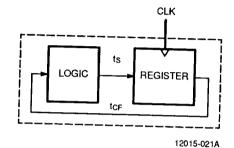

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

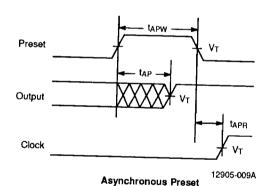
Parameter Symbol	Parameter Description					Min.	Max.	Unit
t _S	Setup Time fro	om Input or Feedback t	to Clock	Withou	It Complement Array	17		ns
tsc	Setup Time fro	om Input or Feedback t	lo Clock	With C	omplement Array	30		ns
tн	Hold Time					0		ns
tco	Clock to Outpu	ut					13	ns
tcf	Clock to Feedt	oack (Note 3)					10	ns
tap	Asynchronous Preset to Output					15	ns	
tapw	Asynchronous Preset Width				10		ns	
t _{APR}	Asynchronous	synchronous Preset Recovery Time			8		ns	
twL	0	LOW				10		ns
twH	Clock Width	HIGH				10		ns
f _{MAX}		External Feedback	Without		1/(t _S + t _{CO})	33		MHz
	Maximum	Internal Feedback	Complen Array	nent	1/(t _S + t _{CF})	37		MHz
f _{MAXC}	Frequency (Note 4)	External Feedback	With		1/(tsc + tco)	23		MHz
		Internal Feedback	Complem Array	ient	1/(t _{SC} + t _{CF})	25		MHz
t _{PZX}	OE to Output Enable				12	ns		
t _{PXZ}	OE to Output Disable					10	ns	

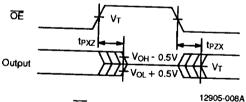

- 2. See Switching Test Circuit for test conditions.
- 3. Calculated from measured fMAX internal.
- These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.


SWITCHING WAVEFORMS

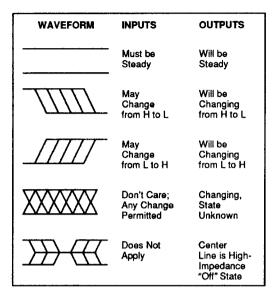

Registered Output (without Complement Array)


12905-007A Registered Output (with Complement Array)

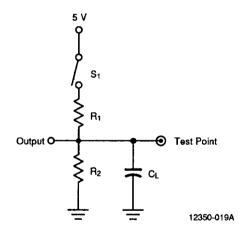


Clock to Feedback (f_{MAX} Internal) See Path at Right

Clock Width



OE to Output Disable/Enable


- 1. $V_T = 1.5 V$
- 2. Input pulse amplitude 0 V to 3.0 V.
- 3. Input rise and fall times 2-5 ns typical.

KEY TO SWITCHING WAVEFORMS

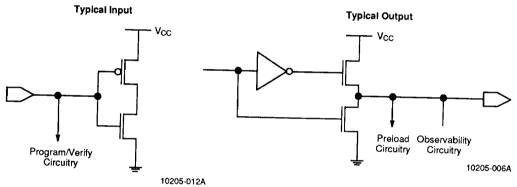
KS000010-PAL

SWITCHING TEST CIRCUIT

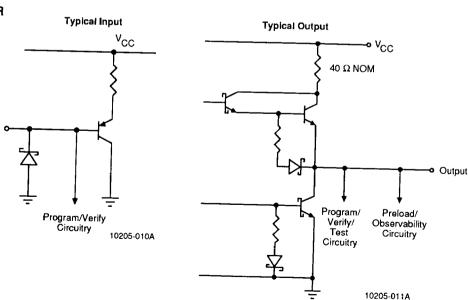
Specification	S ₁	CL	R ₁	R ₂	Measured Output Value
tco, tcF	Closed				1.5 V
tpzx	$Z \rightarrow H$: Open $Z \rightarrow L$: Closed	50 pF	200 Ω	390 Ω	1.5 V
t _{PXZ}	H → Z: Open L → Z: Closed	5 pF			$H \rightarrow Z: V_{OH} -0.5 V$ L $\rightarrow Z: V_{OL} +0.5 V$

PLS167/168 3-33

ENDURANCE CHARACTERISTICS


The PLSCE167/8 is manufactured using AMD's advanced electrically erasable process. This technology uses an EE cell to replace the fuse link used in bipolar

parts. As a result, the device can be erased and reprogrammed – a feature which allows 100% testing at the factory.

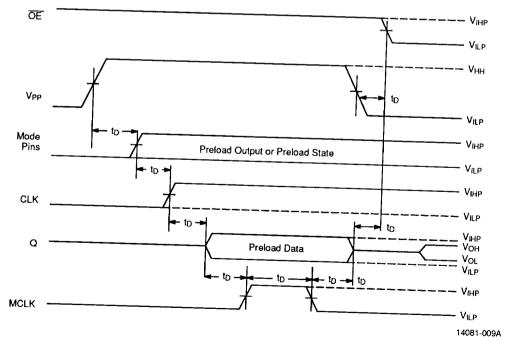

Endurance Characteristics

Symbol	Parameter	Min.	Units	Test Conditions
t _{DR} Min. Pattern Data Retention Time	Min Pattern Data Retention Time	10	Years	Max. Storage Temperature
		20	Years	Max. Operating Temperature (125°C)
N	Min. Reprogramming Cycles	100	Cycles	Normal Programming Conditions

INPUT/OUTPUT EQUIVALENT SCHEMATICS CMOS

BIPOLAR

OUTPUT REGISTER PRELOAD (CMOS Only)

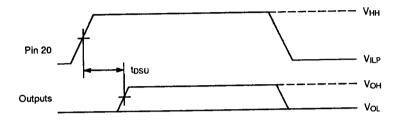

The preload function allows the register to be loaded from the output pins. This feature aids functional testing of sequential designs by allowing direct setting of output states. The procedure for preloading follows.

- 1. Set \overline{OE} to V_{IHP} to disable outputs.
- 2. With Mode pins LOW raise V_{PP} to V_{HH} .
- Use Mode pins to select Preload Output or Preload State.
- 4. Raise CLK to VIHP.

- 5. Apply either V_{IHP} or V_{ILP} to all outputs. Use V_{IHP} to preload a LOW in the flip-flop; use V_{ILP} to preload a HIGH in the flop-flop.
- 6. Pulse MCLK from VILP to VIHP to VILP.
- 7. Remove preload data from outputs.
- 8. Lower VPP to VILP.
- 9. Lower \overline{OE} to V_{ILP} to enable the outputs.
- 10. Verify V_{OL}/V_{OH} at all outputs. To verify state registers, use the observability mode.

Parameter Symbol	Parameter Description			 	T
V _{HH}	Super-level input voltage	Min.	Rec.	Max.	Unit
V _{ILP}	Low-level input voltage	13.25	13.5	13.75	٧
V _{IHP}	High-level input voltage	0	0	0.5	V
t _D	Delay time	4.0	5.0	V _{CC} +1	V
dV₁/dt	V _{HH} Rise Time Slew Rate				μs
dV _f /dt	V _{HH} Fall Time Slew Rate	10		100	V/µs
			2.0	3.0	V/µs

Mode Select Pins							
MD₀	MD ₁	MD ₂	MD ₃				
0	1	1	0				
1	1	1	0				


Output Register Preload Waveform

OBSERVABILITY (Bipolar Only)

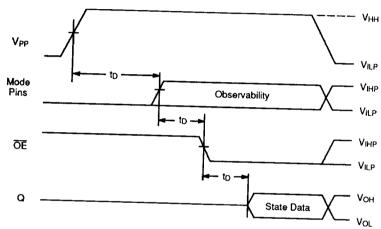
The observability function allows the state register to be sent to the output pins. This feature aids functional testing of sequential designs by allowing direct observation of the buried state register. The procedure for observability follows.

- 1. Apply V_{HH} to pin 20.
- 2. Observe S_0 – S_5 on pins Q_0 – Q_3 , P_0 – P_1 (167) or Q_2 – Q_3 , P_0 – P_3 (168).

Parameter Symbol	Parameter Description	Min.	Rec.	Max.	Unit
VHH	Super-level input voltage	11.5	12	12.5	V
tosu	Delay time	250			ns

14081-010A

Observability Waveforms


OBSERVABILITY (CMOS Only)

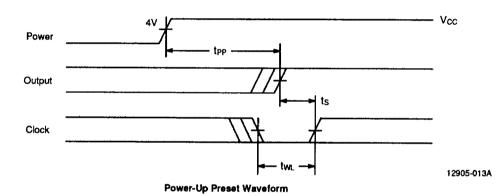
The observability function allows the state register to be sent to the output pins. This feature aids functional testing of sequential designs by allowing direct observation of the buried state register. The procedure for observability follows.

1. Set $\overline{\mathsf{OE}}$ to V_IHP to disable outputs.

- 2. With Mode pins LOW raise V_{PP} to V_{HH} .
- 3. Use Mode pins to select Observability.
- 4. Lower $\overline{\text{OE}}$ to V_{ILP} to enable the state data to the outputs.
- 5. Lower VPP to VILP.

Mode Select Pins				
MD₀	MD ₁	MD ₂	MD ₃	
0	0	0	1	

14081-011A


Observability Waveforms

POWER-UP PRESET

The power-up preset feature ensures that all flip-flops will be preset to HIGH after the device has been powered up. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up preset and the wide range of ways V_{CC} can rise to its steady state, two conditions are required to ensure a valid power-up preset. These conditions are:

- 1. The V_{CC} rise must be monotonic.
- Following preset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description	Max.	Unit	
tpp	Power-up Preset Time	1000	ns	
ts	Input or Feedback Setup Time	See Sv	vitchina	
twL	Clock Width LOW		Characteristics	

3

OUTPUT REGISTER PRELOAD (Bipolar Only)

The preload function allows the register to be loaded from the output pins. This feature aids functional testing of sequential designs by allowing direct setting of output states. The procedure for preloading follows.

- 1. Raise Vcc to 5.0 V \pm 0.5 V.
- 2. Raise pin 19 to VHH.
- 3. Disable output pins by raising P/OE pin to V_{HP}.
- 4. Apply V_{BHP}/V_{BP} as desired to all output pins.
- Pulse pin 21 or pin 8/7 from V_{ILP} to V_{IH} and back to V_{ILP}. Pin 21 will preload output registers while pin 8/7(167/168) will preload buried state registers.
- 6. Remove V_{EP}/V_{EP} from output pins.
- 7. Enable output pins by lowering P/OE pin to VILP.
- 8. Lower pin 19 to V_{ILP}.

Parameter Symbol	Parameter Description	Min.	Rec.	Max.	Unit
V _{HH}	Super-level input voltage	11.5	12	12.5	V
VILP	Low-level input voltage	0	0	0.5	V
V _{IHP}	High-level input voltage	2.4	5.0	5.5	V
to	Delay time	1			μs
dV⊮dt	V _{HH} Rise Time Slew Rate	10		100	V/µs
dV#dt	V _{HH} Fall Time Slew Rate		2.0	3.0	V/µs

PLS167

Preioad Data	Puise	Preloaded Register
Qo-Q3, Po-P1		
D ₀ D ₅	Pin 21	Qo-Q3, Po-P1
Do-Ds	Pin 8	So-Ss

PLS168

Preioad Data	Pulse	Preloaded Register
Q ₀ -Q ₃ , P ₀ -P ₃		
D ₀ D ₇	Pin 21	Qo-Q3, Po-P3
X, X, D ₂ D ₇	Pin 7	So-Ss

Output Register Preload Waveform