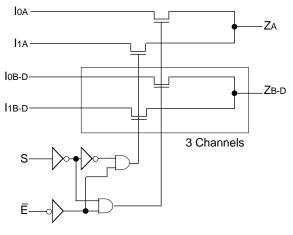
QUAD 2:1 MUX/DEMUX BUS SWITCH

IDT74FST3257 PRELIMINARY

FEATURES:

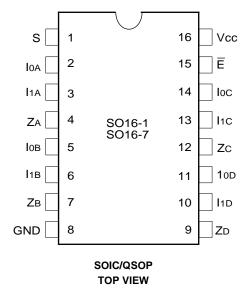
- Bus switches provide zero delay paths
- Extended commercial range of -40°C to +85°C
- Low switch on-resistance: FST3xxx – 5Ω
- TTL-compatible input and output levels
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- Available in QSOP and SOIC

DESCRIPTION:


The FST3257 belongs to IDT's family of Bus switches. Bus switch devices perform the function of connecting or isolating two ports without providing any inherent current sink or source

capability. Thus they generate little or no noise of their own while providing a low resistance path for an external driver. These devices connect input and output ports through an n-channel FET. When the gate-to-source junction of this FET is adequately forward-biased the device conducts or the resistance between input and output ports is small. Without adequate bias on the gate-to-source junction of the FET, the FET is turned off, therefore with no Vcc applied, the device has hot insertion capability.

The low on-resistance and simplicity of the connection between input and output ports reduces the delay in this path to close to zero.


The FST3257 provides a 4-bit 2:1 multiplexer/demultiplexer. The S pin controls the mux select and the \overline{E} pin serves as the switch enable.

FUNCTIONAL BLOCK DIAGRAM

3257 drw 01

PIN CONFIGURATION

3257 drw 02

PIN DESCRIPTION

Pin Names	1/0	Description
Ioa-Iod	I/O	Port 0
I1A-I1D	I/O	Port 1
Ē	I	Switch Enable (Active Low)
S	I	Mux Select
Za-Zb	I/O	Port Z

3257 tbl 01

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	-0.5 to +7.0	>
Tstg	Storage Temperature	-65 to +150	°C
Іоит	Maximum Continuous Channel Current	128	mA

NOTES: 3257

- Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating condiitions for extended periods may affect reliability.
- 2. Vcc, Control and Switch terminals.

FUNCTION TABLE(1)

Ē	S	loa-d	l1A-D	Z A-D
Н	Х	Х	Х	Z
L	Н	Х	L	L
L	Н	Х	Н	Н
L	L	L	Х	L
L	L	Н	X	Н

NOTE:

3257 tbl 03

- 1. H = HIGH Voltage Level
- L = LOW Voltage Level
 - X = Don't Care
 - Z = High Impedance

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions ⁽²⁾	Тур.	Unit
CIN	Control Input Capacitance		4	pF
CI/O	Switch Input/Output Capacitance	Switch Off		pF

NOTES

- 1. Capacitance is characterized but not tested
- 2. TA = 25°C, f = 1MHz, VIN = 0V, VOUT = 0V

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Commercial: $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5.0V \pm 5\%$

Typ.(2) Test Conditions(1) Min. Max. Unit Symbol **Parameter** Input HIGH Voltage Guaranteed Logic HIGH for Control Inputs Vін 2.0 Guaranteed Logic LOW for Control Inputs V_{IL} Input LOW Voltage 8.0 V Vcc = Max. lтн Input HIGH Current $V_I = V_{CC}$ ±1 μΑ liL Input LOW Voltage VI = GND +1 **IOZH** High Impedance Output Current Vcc = Max.Vo = Vcc ±1 μΑ Vo = GND **IOZL** (3-State Output pins) ±1 **Short Circuit Current** $Vcc = Max., Vo = GND^{(3)}$ los 300 mΑ -0.7 -1.2 ٧ Vik Clamp Diode Voltage Vcc = Min., In = -18mARon Switch On Resistance(4) VCC = Min., VIN = 0.0V,5 Ω Ion = 30mAVCC = Min., VIN = 2.4V,10 15 Ω ION = 15mAVCC = 0V, $VIN or <math>VO \le 4.5V$ **IOFF** Input/Output Power Off Leakage ±1 μΑ Icc Quiescent Power Supply Current Vcc = Max., VI = GND or Vcc 0.1 3 μΑ

NOTES:

3257 tbl 05

3257 tbl 04

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
- 4. Measured by voltage drop between ports at indicated current through the switch.

10.3 2

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	$Vcc = Max.$ $Vin = 3.4V^{(3)}$		1	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open Enable Pin Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	30	40	μΑ/ MHz/ Switch
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open Enable Pin Toggling	VIN = VCC VIN = GND		1.2	1.6	mA
		(4 Switches Toggling) fi = 10MHz 50% Duty Cycle	VIN = 3.4 VIN = GND		1.5	2.4	

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fiN)$

Icc = Quiescent Current

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fi = Input Frequency

N = Number of Switches Toggling at fi

All currents are in milliamps and all frequencies are in megahertz.

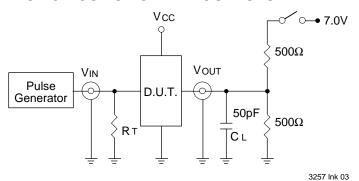
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Commercial: TA = -40°C to +85°C, VCC = 5.0V ± 5 %

Symbol	Description	Condition ⁽¹⁾	Min. ⁽²⁾	Тур.	Max.	Unit
tPLH	Data Propagation Delay	CL = 50pF	_	_	0.25	ns
tPHL	I to Z, Z to I ^(3,4)	$RL = 500\Omega$				
tPLH	Switch Multiplex Delay		1.5	_	5.2	ns
tPHL	S to I, Z					
tpzh	Switch Turn on Delay		1.5	_	4.8	ns
tPZL	Ē to Ⅰ, Z					
tPHZ	Switch Turn off Delay		1.5	_	5.0	ns
tPLZ	\overline{E} to I, $Z^{(3)}$					
Qcı	Charge Injection, Typical ^(5,6)		_	1.5	_	рС
Qcdi	Charge Injection, Typical ^(6,7)		_	0.5	_	рC

NOTES:


3257 tbl 07

3257 tbl 06

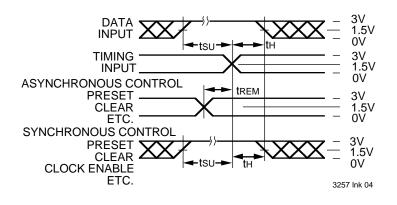
- 1. See test circuit and waveforms.
- 2. Minimum limits guaranteed but not tested.
- 3. This parameter is guaranteed by design but not tested.
- 4. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time is constant and much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
- 5. Measured at switch turn off, load = 50 pF in parallel with 10 m Ω scope probe, Vin = 0.0 volts.
- Measured at switch turn off through bus multiplexer, (e.g. lo to Z = > 11 to Z), load = 50 pF in parallel with 10 MΩ scope probe, VIN at A = 0.0 volts. Charge injection is reduced because the injection from the turn off of the lo to Z switch is compensated by the turn on of the l1 to Z switch.
- 7. Characterized parameter. Not 100% tested.

10.3 3

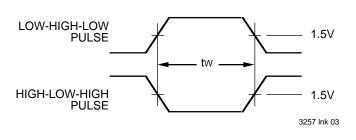
TEST CIRCUITS AND WAVEFORMS TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

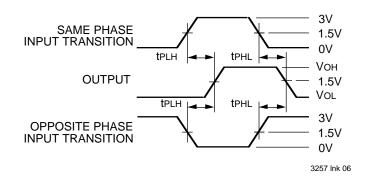
Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

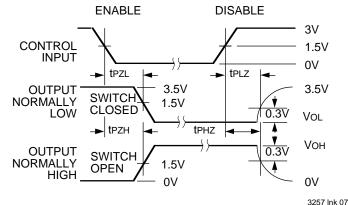

DEFINITIONS:

3257 lnk 08


CL= Load capacitance: includes jig and probe capacitance.

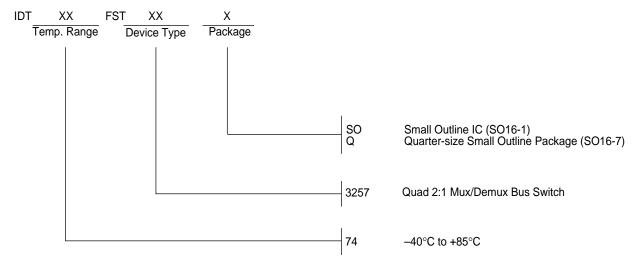
RT = Termination resistance: should be equal to Zo∪T of the Pulse Generator.


SET-UP, HOLD AND RELEASE TIMES


PULSE WIDTH

PROPAGATION DELAY

ENABLE AND DISABLE TIMES



NOTES:

- Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate ≤ 1.0MHz; tF ≤ 2.5ns; tR ≤ 2.5ns

10.3

ORDERING INFORMATION

3257 drw 08