MOS FET Relay

MOS FET Relay for Switching Analog Signals, with an I/O Dielectric Strength of 5 kVAC Using Optical Isolation

■ Switches minute analog signals.

- Switches AC and DC.

■ Load voltage: 600 V .
■ I/O dielectric strength: 5 kVAC .
■ UL/CSA approval pending.

- Appearance

Note: "G3VM" is not printed on the actual product.

Ordering Information

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Taping quantity
SPST-NO	PCB terminals	600 VAC	G3VM-601BY	50	---
	Surface-mounting terminals		G3VM-601EY		
			G3VM-601EY(TR)	---	1,500

Application Examples

- Electronic automatic exchange systems
- Measuring systems
- FA
- Security systems

Specifications

- Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item			Symbol	Rating	Conditions
Input	LED forward current		I_{F}	50 mA	---
	LED forward current reduction rate		$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	$-0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	Repetitive peak LED forward current		$\mathrm{I}_{\text {FP }}$	1 A	$100-\mu$ s pulses, 100 pps
	LED reverse voltage		V_{R}	5 V	---
	Permissible loss		Pin	50 mW	---
	Connection temperature		T_{J}	$125^{\circ} \mathrm{C}$	---
Output	Output dielectric strength		$\mathrm{V}_{\text {OFF }}$	600 V	AC peak value
	Continuous load current	A connection	${ }^{1} 0$	100 mA	---
		B connection		100 mA	---
		C connection		200 mA	---
	Peak load current		$\mathrm{I}_{\text {pead }}$	0.3 A	---
	Output loss		$\mathrm{P}_{\text {out }}$	454 mW	---
	ON current reduction rate	A connection	$\Delta \mathrm{I}_{\mathrm{ON}}{ }^{1} \mathrm{C}$	$-1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
		B connection		$-1 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$	
		C connection		$-2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$	
Total permissible loss			P_{T}	504 mW	---
Dielectric strength between I/O terminals (See note.)			$\mathrm{V}_{1-\mathrm{O}}$	5,000 Vrms	$A C, 1$ min
Insulation resistance			$\mathrm{R}_{1-\mathrm{O}}$	$5 \times 10^{10} \Omega$	$\mathrm{V}_{\mathrm{S}}=500 \mathrm{~V}$, ambient operating humidity $\leq 60 \%$
Storage temperature			Tstg	-55 to $125^{\circ} \mathrm{C}$	---
Ambient operating temperature			Ta	-40 to $85^{\circ} \mathrm{C}$	---

Note The dielectric strength between I/O terminals was measured with voltage applied to pins 1,2 , and 3 together, and to pins 4 , 5 , and 6 together.

Connection Circuit Diagram

A connection

B connection

C connection

- Electrical Performance ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item			Symbol	Minimum	Standard	Maximum	Conditions
Input	LED forward current		V_{F}	1.0 V	1.15 V	1.3 V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current		I_{R}	---	---	$10 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals		C_{T}	---	30 pF	---	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
Output	Maximum resistance with output ON	A connection	R_{ON}	---	22Ω	35Ω	$\mathrm{I}_{\mathrm{ON}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		B connection		---	17Ω	27Ω	$\mathrm{I}_{\mathrm{ON}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
		C connection		---	8.5Ω	13.5Ω	$\mathrm{l}_{\mathrm{ON}}=200 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Current leakage when the relay is closed		ILEAK	---	---	$10 \mu \mathrm{~A}$	$\mathrm{V}_{\text {OFF }}=600 \mathrm{~V}$
Turn-ON time			T_{ON}	---	0.5 ms	1.5 ms	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=200 \Omega \\ & (\text { See note.) } \\ & \mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \end{aligned}$
Turn-OFF time			Toff	---	0.1 ms	1.0 ms	
Floating capacity between I/O terminals			$\mathrm{C}_{1-\mathrm{O}}$	---	0.8 pF	---	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

Note The operate and release time were measured in the way shown below.

- Recommended Operating Conditions

Item	Symbol	Minimum	Standard	Maximum
Operating voltage	V_{DD}	---	---	480 V
Forward current	I_{F}	5 mA	---	25 mA
Continuous load current	I_{O}	---	--	100 mA
Operating temperature	Ta	$-20^{\circ} \mathrm{C}$	---	$65^{\circ} \mathrm{C}$

Dimensions

Note All units are in millimeters unless otherwise indicated.

G3VM-601BY

Weight: 0.4 g

G3VM-601EY

Weight: 0.4 g

Note: "G3VM" is not printed on the actual product.

- PCB Dimensions (Bottom View) G3VM-601BY

- Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-601EY

Installation

■ Terminal Arrangement/Internal Connection (Top View)

G3VM-601BY

G3VM-601EY

Precautions

-! WARNING

Be sure to turn OFF the power when wiring the Relay, otherwise an electric shock may be received.

-! WARNING

Do not touch the charged terminals of the SSR, otherwise an electric shock may be received.

-! Caution

Do not apply overvoltage or overcurrent to the I/O circuits of the SSR, otherwise the SSR mya malfunction or burn.

-! Caution

Be sure to wire and solder the Relay under the proper soldering conditions, otherwise the Relay in operation may generate excessive heat and the Relay may burn.

■ Correct Use

Typical Relay Driving Circuit Examples
C-MOS

Transistor

Use the following formula to obtain the LED current limiting resistance value to assure that the relay operates accurately.

$$
R_{1}=\frac{V_{c c}-V_{o L}-V_{F}(O N)}{5 \text { to } 20 \mathrm{~mA}}
$$

Use the following formula to obtain the LED forward voltage value to assure that the relay releases accurately.
$\mathrm{V}_{\text {(} \mathrm{OfF} \text {) }}=\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{OH}}<0.8 \mathrm{~V}$

Protection from Surge Voltage on the Input Terminals

If any reversed surge voltage is imposed on the input terminals, insert a diode in parallel to the input terminals as shown in the following circuit diagram and do not impose a reversed voltage value of 3 V or more.

Surge Voltage Protection Circuit Example

Protection from Spike Voltage on the Output Terminals

If a spike voltage exceeding the absolute maximum rated value is generated between the output terminals, insert a C-R snubber or clamping diode in parallel to the load as shown in the following circuit diagram to limit the spike voltage.
Spike Voltage Protection Circuit Example

Unused Terminals (6-pin only)

Terminal 3 is connected to the internal circuit. Do not connect anything to terminal 3 externally.

Pin Strength for Automatic Mounting

In order to maintain the characteristics of the relay, the force imposed on any pin of the relay for automatic mounting must not exceed the following.

In direction $\mathrm{A}: 1.96 \mathrm{~N}$ max. In direction $\mathrm{B}: 1.96 \mathrm{~N}$ max.

Load Connection

Do not short-circuit the input and output terminals while the relay is operating or the relay may malfunction.

AC Connection

DC Single Connection

DC Parallel Connection

Solder Mounting

Maintain the following conditions during manual or reflow soldering of the relays in order to prevent the temperature of the relays from rising

1. Pin Soldering

Solder each pin at a maximum temperature of $260^{\circ} \mathrm{C}$ within 10 s .
2. Reflow Soldering
a. Solder each pin at a maximum temperature of $260^{\circ} \mathrm{C}$ within 10 s .
b. Make sure that the ambient temperature on the surface of the resin casing is $240^{\circ} \mathrm{C}$ max. for 10 s maximum.
c. The following temperature changes are recommendable for soldering.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Cat. No. K114-E1-1 In the interest of product improvement, specifications are subject to change without notice. OMRON Corporation

Electronics Components Company

Electronic \& Mechanical Components Division H.Q.
Low Signal Relay Division
2-1, 2-chome, Nishikusatsu, Kusatsu-city,
Shiga-pref., 525-0035 Japan
Printed in Japan
Phone: (81)77-565-5481 Fax: (81)77-565-5581
0201-2M (0201) (A)

