

Spread Aware™, Zero Delay Buffer

Table 1. Input Logic

Features

- Spread Aware™—designed to work with SSFTG reference signals
- Two banks of four outputs, plus the fed back output
- Outputs may be three-stated
- Available in 16-pin SOIC or SSOP package
- Extra strength output drive available (-19 version)
- Internal feedback

Key Specifications

Operating Voltage:	3.3V±10%
Operating Range:	15 < f _{OUT} < 133 MHz
Cycle-to-Cycle Jitter:	250 ps
Output to Output Skew:	150 ps
Propagation Delay:	150 ps

SEL1 SEL0 QA0:3 QB0:3 PLL QFB 0 0 Three-Three-Shutdown Active State State 0 1 Active Three-Active, Active Utilized State 1 0 Active Active Shutdown. Active Bypassed 1 1 Active Active Active, Active Utilized

Block Diagram Pin Configuration QFB REF II QFB 16 1 П REF PLL мих QA0 Π 2 15 П QA3 3 QA1 II 14 QA2 П QA0 VDD 🎞 4 13 П VDD QA1 GND II 5 12 GND П QA2 QB3 SEL0 QB0 Π 6 11 QB1 7 10 QB2 QA3 Ш П I 8 SEL1 II 9 П SEL0 QB0 SEL1 QB1 QB2 QB3 Ц Spread Aware is a trademark of Cypress Semiconductor Corporation.

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
REF	1	I	Reference Input: The output signals QA0:3 through QB0:3 will be synchro- nized to this signal unless the device is programmed to bypass the PLL.
QFB	16	0	<i>Feedback Output:</i> This signal is used as the feedback internally to establish the propagation delay of nearly 0.
QA0:3	2, 3, 14, 15	0	Outputs from Bank A: The frequency of the signals provided by these pins is equal to the signal connected to REF.
QB0:3	6, 7, 10, 11	0	Outputs from Bank B: The frequency of the signals provided by these pins is equal to the signal connected to REF.
VDD	4, 13	Р	<i>Power Connections:</i> Connect to 3.3V. Use ferrite beads to help reduce noise for optimal jitter performance.
GND	5, 12	Р	<i>Ground Connections:</i> Connect all grounds to the common system ground plane.
SEL0:1	9, 8	I	<i>Function Select Inputs:</i> Tie to V _{DD} (HIGH, 1) or GND (LOW, 0) as desired per <i>Table 1</i> .

Overview

The W162 products are nine-output zero delay buffers. A Phase-Locked Loop (PLL) is used to take a time-varying signal and provide eight copies of that same signal out.

Internal feedback is used to maximize the number of output signals provided in the 16-pin package.

Spread Aware

Many systems being designed now utilize a technology called Spread Spectrum Frequency Timing Generation. Cypress has been one of the pioneers of SSFTG development, and we designed this product so as not to filter off the Spread Spectrum feature of the Reference input, assuming it exists. When a zero delay buffer is not designed to pass the SS feature through, the result is a significant amount of tracking skew which may cause problems in systems requiring synchronization. For more details on Spread Spectrum timing technology, please see the Cypress Application note titled, "EMI Suppression Techniques with Spread Spectrum Frequency Timing Generator (SSFTG) ICs."

Functional Description

Logic inputs provide the user the ability to turn off one or both banks of clocks when not in use, as described in *Table 1*. Disabling a bank of unused outputs will reduce jitter and power consumption, and will also reduce the amount of EMI generated by the W162.

These same inputs allow the user to bypass the PLL entirely if so desired. When this is done, the device no longer acts as a zero delay buffer, it simply reverts to a standard nine-output clock driver.

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability

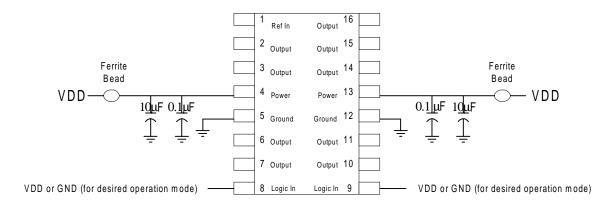
Parameter	Description	Rating	Unit
V _{DD} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
T _A	Operating Temperature	0 to +70	°C
Τ _B	Ambient Temperature under Bias	–55 to +125	°C
P _D	Power Dissipation	0.5	W

DC Electrical Characteristics: $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 3.3V \pm 10\%$

Parameter	Description	Test Condition	Min	Тур	Max	Unit
I _{DD}	Supply Current	Unloaded, 100 MHz			40	mA
V _{IL}	Input Low Voltage				0.8	V
V _{IH}	Input High Voltage		2.0			V
V _{OL}	Output Low Voltage	I _{OL} = 12 mA (-19) I _{OL} = 8 mA (-9)			0.4	V
V _{OH}	Output High Voltage	I _{OL} = 12 mA (-19) I _{OL} = 8 mA (-9)	2.4			V
IIL	Input Low Current	$V_{IN} = 0V$	-500			μΑ
I _{IH}	Input High Current	$V_{IN} = V_{DD}$			10	μA

AC Electrical Characteristics: $T_A = 0^{\circ}C$ to +70°C, $V_{DD} = 3.3V \pm 10\%$

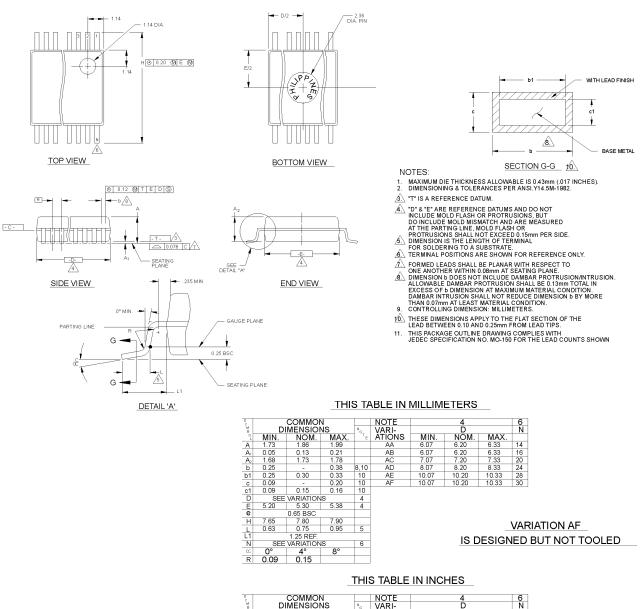
Parameter	Description	Test Condition	Min	Тур	Max	Unit
f _{IN}	Input Frequency		15		133	MHz
f _{OUT}	Output Frequency	15-pF load ^[5]	15		133	MHz
t _R	Output Rise Time (-09) ^[1]	2.0 to 0.8V, 15-pF load		2	2.5	ns
	Output Rise Time (-19) ^[1]	2.0 to 0.8V, 20-pF load			1.5	ns
t _F	Output Fall Time (-09) ^[1]	2.0 to 0.8V, 15-pF load		2	2.5	ns
	Output Rise Time (-19) ^[1]	2.0 to 0.8V, 20-pF load			1.5	ns
t _{PD}	FBIN to REF Skew ^[2, 3]	Measured at V _{DD} /2			150	ps
t _{SK}	Output to Output Skew	All outputs loaded equally			150	ps
t _D	Duty Cycle	15-pF load ^[4]	45	50	55	%
t _{LOCK}	PLL Lock Time	Power supply stable			1.0	ms
t _{JC}	Jitter, Cycle-to-Cycle				250	ps


Notes:

Long input rise and fall time will degrade skew and jitter performance.
All AC specifications are measured with a 50Ω transmission line, load terminated with 50Ω to 1.4V.
Skew is measured at V_{DD}/2 on rising edges.
Duty cycle is measured at V_{DD}/2.

^{5.} For the higher drive -19, the load is 20 pF.

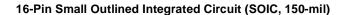
Schematic


Ordering Information

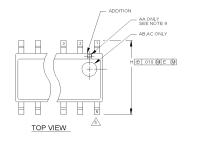
Ordering Code	Option	Package Name	Package Type
W162	-09, -19	G H	16-pin Plastic SOIC (150-mil) 16-pin Plastic SSOP (209-mil)

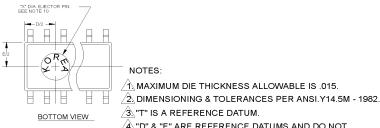
Document #: 38-00788-A

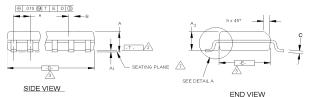
Package Diagram

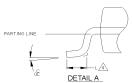

16-pin SSOP Small Shrunk Outline Package (SSOP,209-mil)

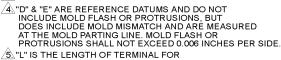
s	COMMON				NOTE		4		6
Y.				No					
MB		DIMENSIONS			VARI-		D		N
ĉ	MIN.	NOM.	MAX.	Τ _E	ATIONS	MIN.	NOM.	MAX.	
Α	.068	.073	.078		AA	.239	.244	.249	14
A ₁	.002	.005	.008		AB	.239	.244	.249	16
A ₂	.066	.068	.070		AC	.278	.284	.289	20
b	.010	-	.015	8,10	AD	.318	.323	.328	24
b1	.010	.012	.013	10	AE	.397	.402	.407	28
С	.004	-	.008	10	AF	.397	.402	.407	30
c1	.004	.006	.006	10					
D	SEE	VARIATION	is	4					
E	.205	.209	.212	4					
е		.0256 BSC							
Н	.301	.307	.311						
L	.025	.030	.037	5					
L1	.049 REF.								
N	SEE VARIATIONS			6					
0	0°	4°	8°						
R	.004	.006							


5




Package Diagram




NOTES:

- SOLDERING TO A SUBSTRATE.
- TERMINAL POSITIONS ARE SHOWN FOR
- REFERENCE ONLY. 8. FORMED LEADS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN .003 INCHES AT SEATING PLANE. 9. THE APPEARANCE OF PIN #1 I.D ON THE 8 LD IS OPTIONAL, ROUND TYPE ON SINGLE LEADFRAME AND RECTANGULAR TYPE ON MATRIX LEADFRAME. 10. COUNTRY OF ORIGIN LOCATION AND EJECTOR PIN ON PACKAGE BOTTOM IS OPTIONAL AND DEPEND ON ASSEMBLY LOCATION. 11. CONTROLLING DIMENSION: INCHES

- A CONTROLLING DIMENSION: INCHES.

THIS TABLE IN INCHES

s		~~~~~~			NOTE				
Y	COMMON				NOTE		3		5
M B	D	IMENSIOI	٧S	No	VARI-		D		N
°L	MIN.	NOM.	MAX.	ΤE	ATIONS	MIN.	NOM.	MAX.	
Α	.061	.064	.068		AA	.189	.194	.196	8
A,	.004	.006	.0098		AB	.337	.342	.344	14
A_2	.055	.058	.061		AC	.386	.391	.393	16
B C	.0138	.016	.0192						
С	.0075	.008	.0098						
D	SEE VARIATIONS			3					
D E e	.150	.155	.157						
е		.050 BSC							
Н	.230	.236	.244						
h	.010	.013	.016						
L	.016	.025	.035						
N &	SEE VARIATIONS			5					
œ	0°	5°	8°						
Х	.085	.093	.100						

THIS TABLE IN MILLIMETERS

S Y	COMMON				NOTE		3		5
MB	DIMENSIONS			No	VARI-		D		Ν
° L	MIN.	NOM.	MAX.	ΓE	ATIONS	MIN.	NOM.	MAX.	
Α	1.55	1.63	1.73		AA	4.80	4.93	4.98	8
A	0.127	0.15	0.25		AB	8.58	8.69	8.74	14
A_2	1.40	1.47	1.55		AC	9.80	9.93	9.98	16
B C D E e	0.35	0.41	0.49						
С	0.19	0.20	0.25						
D	SEE	VARIATION		3					
E	3.81	3.94	3.99						
		1.27 BSC							
Н	5.84	5.99	6.20						
h	0.25	0.33	0.41						
L	0.41	0.64	0.89						
N œ	SEE VARIATIONS			5					
œ	0°	5°	8°						
Х	2.16	2.36	2.54						

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.