SCES139A - JULY 1998 - REVISED JANUARY 1999 - State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus™ Design for 2.5-V and 3.3-V Operation and Low Static Power Dissipation - Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V<sub>CC</sub>) - Typical V<sub>OLP</sub> (Output Ground Bounce) <0.8 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C - High-Drive (-24/24 mA at 2.5-V and -32/64 mA at 3.3-V V<sub>CC</sub>) - Power Off Disables Outputs, Permitting Live Insertion - High-Impedance State During Power Up and Power Down Prevents Driver Conflict - Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating - Auto3-State Eliminates Bus Current Loading When Output Exceeds V<sub>CC</sub> + 0.5 V - Flow-Through Architecture Facilitates Printed Circuit Board Layout - Distributed V<sub>CC</sub> and GND Pin Configuration Minimizes High-Speed Switching Noise - Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package ### SN54ALVTH16721 . . . WD PACKAGE SN74ALVTH16721 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW) NC - No internal connection #### description The 'ALVTH16721 devices are 20-bit flip-flops with 3-state outputs designed for 2.5-V or 3.3-V V<sub>CC</sub> operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. On the positive transition of the clock (CLK), the flip-flops store the logic levels set up at the data (D) inputs. A buffered output-enable $(\overline{OE})$ input places the 20 outputs in either a normal logic state (high or low) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components. $\overline{OE}$ does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments Incorporated. SCES139A - JULY 1998 - REVISED JANUARY 1999 ### description (continued) When $V_{CC}$ is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, $\overline{OE}$ should be tied to $V_{CC}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. The SN54ALVTH16721 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16721 is characterized for operation from –40°C to 85°C. #### **FUNCTION TABLE** | | INPU | ITS | | OUTPUT | |----|-------|------------|---|----------------| | OE | CLKEN | CLK | D | Q | | L | Н | X | Χ | Q <sub>0</sub> | | L | L | $\uparrow$ | Н | Н | | L | L | $\uparrow$ | L | L | | L | L | L or H | Χ | Q <sub>0</sub> | | Н | Χ | Χ | Χ | Z | #### logic diagram (positive logic) SCES139A - JULY 1998 - REVISED JANUARY 1999 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V <sub>CC</sub> | -0.5 V to 4.6 V | |------------------------------------------------------------------------------------|-----------------| | Input voltage range, V <sub>I</sub> (see Note 1) | –0.5 V to 7 V | | Voltage range applied to any output in the high-impedance | | | or power-off state, V <sub>O</sub> (see Note 1) | –0.5 V to 7 V | | Voltage range applied to any output in the high state, V <sub>O</sub> (see Note 1) | –0.5 V to 7 V | | Output current in the low state, I <sub>O</sub> : SN54ALVTH16721 | 96 mA | | SN74ALVTH16721 | 128 mA | | Output current in the high state, I <sub>O</sub> : SN54ALVTH16721 | –48 mA | | SN74ALVTH16721 | −64 mA | | Input clamp current, $I_{IK}$ ( $V_I < 0$ ) | –50 mA | | Output clamp current, I <sub>OK</sub> (V <sub>O</sub> < 0) | –50 mA | | Package thermal impedance, θ <sub>JA</sub> (see Note 2): DGG package | 81°C/W | | DGV package | 86°C/W | | DL package | 74°C/W | | Storage temperature range, T <sub>stq</sub> – | 65°C to 150°C | <sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - 2. The package thermal impedance is calculated in accordance with JESD 51. ### recommended operating conditions, $V_{CC}$ = 2.5 V $\pm$ 0.2 V (see Note 3) | | | | SN54 | ALVTH1 | 6721 | SN74 | ALVTH1 | 6721 | UNIT | |---------------------|------------------------------------------------|-----------------|------|--------|------|------|--------|------|------| | | | | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | Vcc | Supply voltage | | 2.3 | | 2.7 | 2.3 | | 2.7 | V | | VIH | High-level input voltage | | 1.7 | | | 1.7 | | | V | | V <sub>IL</sub> | Low-level input voltage | | | | 0.7 | | | 0.7 | V | | VI | Input voltage | | 0 | VCC | 5.5 | 0 | VCC | 5.5 | V | | loн | High-level output current | | | | -6 | | | -8 | mA | | lai | Low-level output current | | | | 6 | | | 8 | mA | | lOL | Low-level output current; current duty cycle ≤ | 50%; f ≥ 1 kHz | | | 18 | | | 24 | IIIA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | | | 10 | | | 10 | ns/V | | Δt/ΔV <sub>CC</sub> | Power-up ramp rate | | 200 | | · | 200 | | | μs/V | | T <sub>A</sub> | Operating free-air temperature | | -55 | | 125 | -40 | | 85 | °C | NOTE 3: All unused control inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. # SN54ALVTH16721, SN74ALVTH16721 2.5-V/3.3-V 20-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS SCES139A – JULY 1998 – REVISED JANUARY 1999 ## recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V $\pm$ 0.3 V (see Note 3) | | | | SN54 | ALVTH1 | 6721 | SN74 | ALVTH1 | 6721 | UNIT | |---------------------|------------------------------------------------|-----------------|------|--------|------|------|--------|------|------| | | | | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | Vcc | Supply voltage | | 3 | | 3.6 | 3 | | 3.6 | V | | VIH | High-level input voltage | | 2 | | | 2 | | | V | | V <sub>IL</sub> | Low-level input voltage | | | | 0.8 | | | 0.8 | V | | VI | Input voltage | | 0 | VCC | 5.5 | 0 | Vcc | 5.5 | V | | loн | High-level output current | | | | -24 | | | -32 | mA | | lo. | Low-level output current | | | | 24 | | | 32 | mA | | lor | Low-level output current; current duty cycle ≤ | 50%; f≥1 kHz | | | 48 | | | 64 | IIIA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | | | 10 | | | 10 | ns/V | | Δt/ΔV <sub>CC</sub> | Power-up ramp rate | | 200 | | | 200 | | | μs/V | | TA | Operating free-air temperature | | -55 | | 125 | -40 | | 85 | °C | $NOTE \ 3: \quad All \ unused \ control \ inputs \ of \ the \ device \ must \ be \ held \ at \ V_{CC} \ or \ GND \ to \ ensure \ proper \ device \ operation. \ Refer \ to \ the \ TI \ application \ report,$ Implications of Slow or Floating CMOS Inputs, literature number SCBA004. SCES139A - JULY 1998 - REVISED JANUARY 1999 # electrical characteristics over recommended operating free-air temperature range, $V_{CC}$ = 2.5 V $\pm$ 0.2 V (unless otherwise noted) | PARAMETER | | TEST CO. | NDITIONS | SN54 | ALVTH1 | 6721 | SN74 | ALVTH1 | 6721 | UNIT | |--------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------|------------------|------------|--------------------|------------------|------------|------| | P# | ARAWETER | 1E31 CO | NUTTIONS | MIN | TYP <sup>†</sup> | MAX | MIN | TYP <sup>†</sup> | MAX | UNII | | ٧ıK | | $V_{CC} = 2.3 \text{ V},$ | I <sub>I</sub> = -18 mA | | | -1.2 | | | -1.2 | V | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | I <sub>OH</sub> = -100 μA | V <sub>CC</sub> -( | 0.2 | | V <sub>CC</sub> -0 | .2 | | | | VOH | | V <sub>CC</sub> = 2.3 V | $I_{OH} = -6 \text{ mA}$ | 1.8 | | | | | | V | | | | VCC = 2.5 V | $I_{OH} = -8 \text{ mA}$ | | | | 1.8 | | | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$ | $I_{OL} = 100 \mu A$ | | | 0.2 | | | 0.2 | | | | | | $I_{OL} = 6 \text{ mA}$ | | | 0.4 | | | | | | $V_{OL}$ | V <sub>CC</sub> = 2.3 V | $I_{OL} = 8 \text{ mA}$ | | | | | | 0.4 | V | | | | | VCC = 2.3 V | $I_{OL} = 18 \text{ mA}$ | | | 0.5 | | | | | | | | | $I_{OL} = 24 \text{ mA}$ | | | | | | 0.5 | | | V <sub>RST</sub> | ‡ | V <sub>CC</sub> = 2.7 V | $I_O = 1 \text{ mA},$<br>$V_I = V_{CC} \text{ or GND}$ | | | 0.55 | | | 0.55 | ٧ | | | Control innuts | $V_{CC} = 2.7 \text{ V},$ | V <sub>I</sub> = V <sub>CC</sub> or GND | | | ±1 | | | ±1 | | | | Control inputs | V <sub>CC</sub> = 0 or 2.7 V, | V <sub>I</sub> = 5.5 V | | | 10 | | | 10 | | | II | | V <sub>CC</sub> = 2.7 V | V <sub>I</sub> = 5.5 V | | | 10 | | | 10 | μΑ | | | Data inputs | | $V_I = V_{CC}$ | | | 1 | | | 1 | | | | | | V <sub>I</sub> = 0 | | | <b>-</b> 5 | | | <b>-</b> 5 | | | l <sub>off</sub> | | $V_{CC} = 0$ , | $V_{I}$ or $V_{O} = 0$ to 4.5 V | | | | | | ±100 | μΑ | | I <sub>BHL</sub> § | | $V_{CC} = 2.3 \text{ V},$ | V <sub>I</sub> = 0.7 V | | 115 | | | 115 | | μΑ | | IBHH | | $V_{CC} = 2.3 \text{ V},$ | V <sub>I</sub> = 1.7 V | | -10 | | | -10 | | μΑ | | I <sub>BHLO</sub> | # | $V_{CC} = 2.7 \text{ V},$ | $V_I = 0$ to $V_{CC}$ | 300 | | | 300 | | | μΑ | | Івнно | اار | $V_{CC} = 2.7 \text{ V},$ | $V_I = 0$ to $V_{CC}$ | -300 | | | -300 | | | μΑ | | lEX☆ | | V <sub>CC</sub> = 2.3 V, | V <sub>O</sub> = 5.5 V | | | 125 | | | 125 | μΑ | | I <sub>OZ(Pl</sub> | U/PD)□ | $V_{CC} \le 1.2 \text{ V}, V_{O} = 0.5 \text{ V}$<br>$V_{I} = \text{GND or } V_{CC}, \overline{OE} = 0.5 \text{ V}$ | to V <sub>CC</sub> ,<br>don't care | | | ±100 | | | ±100 | μΑ | | lozh | | V <sub>CC</sub> = 2.7 V, | V <sub>O</sub> = 2.3 V,<br>V <sub>I</sub> = 0.7 V or 1.7 V | | | 5 | | | 5 | μΑ | | lozL | | V <sub>CC</sub> = 2.7 V, | V <sub>O</sub> = 0.5 V,<br>V <sub>I</sub> = 0.7 V or 1.7 V | | | <b>-</b> 5 | | | -5 | μΑ | | ICC | | V <sub>CC</sub> = 2.7 V, | Outputs high | | 0.04 | 0.1 | | 0.04 | 0.1 | mA | | | | $V_{CC} = 2.7 \text{ V},$ $I_{O} = 0,$ | Outputs low | | 2.3 | 4.5 | | 2.3 | 4.5 | | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 0.04 | 0.1 | | 0.04 | 0.1 | | | Ci | | V <sub>CC</sub> = 2.5 V, | V <sub>I</sub> = 2.5 V or 0 | | | | | | | pF | | Со | | V <sub>CC</sub> = 2.5 V, | V <sub>O</sub> = 2.5 V or 0 | | | | | - | | pF | <sup>&</sup>lt;sup>†</sup> All typical values are at $V_{CC} = 2.5 \text{ V}$ , $T_A = 25^{\circ}\text{C}$ . <sup>‡</sup> Data must not be loaded into the flip-flops/latches after applying power. $<sup>\</sup>S$ The bus-hold circuit can sink at least the minimum low sustaining current at $V_{IL}$ max. $I_{BHL}$ should be measured after lowering $V_{IN}$ to GND and then raising it to $V_{IL}$ max. The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min. <sup>#</sup> An external driver must source at least IBHLO to switch this node from low to high. An external driver must sink at least I<sub>BHHO</sub> to switch this node from high to low. <sup>☆</sup>Current into an output in the high state when V<sub>O</sub> > V<sub>CC</sub> <sup>□</sup> High-impedance state during power up or power down SCES139A - JULY 1998 - REVISED JANUARY 1999 # electrical characteristics over recommended operating free-air temperature range, $V_{CC}$ = 3.3 V $\pm$ 0.3 V (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | SN54 | ALVTH1 | 6721 | SN74 | ALVTH1 | 6721 | UNIT | | |---------------------|----------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------|--------|--------------------|------|--------|----------------|------|--| | PAR | RAMETER | 1591 | CONDITIONS | MIN | TYP† | MAX | MIN | TYP† | MAX | UNII | | | VIK | | V <sub>CC</sub> = 3 V, | I <sub>I</sub> = -18 mA | | | -1.2 | | | -1.2 | V | | | | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | I <sub>OH</sub> = -100 μA | V <sub>CC</sub> -0.2 | | V <sub>CC</sub> -0 | .2 | | | | | | Vон | | V <sub>CC</sub> = 3 V | I <sub>OH</sub> = -24 mA | 2 | | | | | | V | | | | | ∧CC = 2 ∧ | I <sub>OH</sub> = -32 mA | | | | 2 | | | | | | | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ | I <sub>OL</sub> = 100 μA | | | 0.2 | | | 0.2 | | | | | | | I <sub>OL</sub> = 16 mA | | | | | | 0.4 | V | | | Voi | | | I <sub>OL</sub> = 24 mA | | | 0.5 | | | | | | | VOL | | V <sub>CC</sub> = 3 V | I <sub>OL</sub> = 32 mA | | | | | | 0.5 | V | | | | | | I <sub>OL</sub> = 48 mA | | | 0.55 | | | | | | | | | | I <sub>OL</sub> = 64 mA | | | | | | 0.55 | | | | V <sub>RST</sub> ‡ | | V <sub>CC</sub> = 3.6 V | $I_O = 1 \text{ mA},$ | | | 0.55 | | 0.55 | | V | | | VKS1. | | | $V_I = V_{CC}$ or GND | | | 0.00 | | | 0.00 | | | | | Control inputs | VCC = 3.6 V, | $V_I = V_{CC}$ or GND | | | ±1 | | | ±1 | | | | | | $V_{CC} = 0 \text{ or } 3.6 \text{ V},$ | V <sub>I</sub> = 5.5 V | | | 10 | | | 10 | μА | | | ΙĮ | | V <sub>CC</sub> = 3.6 V | V <sub>I</sub> = 5.5 V | | - | 10 | | - | 10 | | | | | Data inputs | | $\Lambda^{I} = \Lambda^{CC}$ | | | 1 | | | 1 | | | | | | | V <sub>I</sub> = 0 | | | -5 | | | <del>-</del> 5 | | | | loff | | $V_{CC} = 0,$ | $V_I$ or $V_O = 0$ to 4.5 V | | | | | | ±100 | μΑ | | | IBHL§ | | V <sub>CC</sub> = 3 V, | V <sub>I</sub> = 0.8 V | 75 | | | 75 | | | μΑ | | | IBHH | | $V_{CC} = 3 V$ , | V <sub>I</sub> = 2 V | -75 | | | -75 | | | μΑ | | | I <sub>BHLO</sub> # | | V <sub>CC</sub> = 3.6 V, | $V_I = 0$ to $V_{CC}$ | 500 | | | 500 | | | μΑ | | | Івнно | | $V_{CC} = 3.6 \text{ V},$ | $V_I = 0$ to $V_{CC}$ | -500 | | | -500 | | | μΑ | | | lEX☆ | | | V <sub>O</sub> = 5.5 V | | | 125 | | | 125 | μΑ | | | IOZ(PU/ | /PD)□ | $V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0}.$<br>$V_{I} = \text{GND or } V_{CC}, \overline{O}$ | $\frac{5}{E}$ V to V <sub>CC</sub> ,<br>E = don't care | | | ±100 | | | ±100 | μΑ | | | lozh | | $V_{CC} = 3.6 \text{ V},$ | $V_O = 3 \text{ V}, V_I = 0.8 \text{ V or } 2 \text{ V}$ | | | 5 | | | 5 | μΑ | | | lozL | | V <sub>CC</sub> = 3.6 V, | V <sub>O</sub> = 0.5 V, V <sub>I</sub> = 0.8 V or 2 V | | | -5 | | | <b>–</b> 5 | μΑ | | | | | V <sub>CC</sub> = 3.6 V, | Outputs high | | 0.07 | 0.1 | | 0.07 | 0.1 | | | | Icc | | $I_{O} = 0,$ | Outputs low | | 3.2 | 5 | | 3.2 | 5 | mA | | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | 0.07 | 0.1 | | 0.07 | 0.1 | | | | ∆ICC◊ | | $V_{CC} = 3 \text{ V to } 3.6 \text{ V, C}$<br>Other inputs at $V_{CC}$ | One input at $V_{CC}$ – 0.6 V, or GND | | | 0.4 | | | 0.4 | mA | | | Ci | | V <sub>CC</sub> = 3.3 V, | V <sub>I</sub> = 3.3 V or 0 | | | | | | | pF | | | Со | | V <sub>CC</sub> = 3.3 V, | V <sub>O</sub> = 3.3 V or 0 | | | | | | | pF | | <sup>†</sup> All typical values are at $V_{CC} = 3.3 \text{ V}$ , $T_A = 25^{\circ}\text{C}$ . <sup>♦</sup> This is the increase in supply current for each input that is at the specified TTL voltage level rather than V<sub>CC</sub> or GND. Data must not be loaded into the flip-flops/latches after applying power. <sup>§</sup> The bus-hold circuit can sink at least the minimum low sustaining current at V<sub>IL</sub> max. I<sub>BHL</sub> should be measured after lowering V<sub>IN</sub> to GND and then raising it to V<sub>IL</sub> max. The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min. <sup>#</sup> An external driver must source at least I<sub>BHLO</sub> to switch this node from low to high. An external driver must sink at least IBHHO to switch this node from high to low. $<sup>\</sup>star$ Current into an output in the high state when $V_O > V_{CC}$ <sup>□</sup> High-impedance state during power up or power down SCES139A – JULY 1998 – REVISED JANUARY 1999 ## timing requirements over recommended operating free-air temperature range, $V_{CC}$ = 2.5 V $\pm$ 0.2 V (unless otherwise noted) (see Figure 1) | | | | SN54ALVT | H16721 | SN74ALVT | H16721 | UNIT | |-----------------|---------------------------------|-------------------|----------|--------|----------|--------|------| | | | | MIN | MAX | MIN | MAX | UNIT | | fclock | Clock frequency | | | | | | MHz | | t <sub>W</sub> | Pulse duration, CLK high or low | | | | | | ns | | | Outro Care | Data before CLK↑ | | | | | | | t <sub>su</sub> | Setup time | CLKEN before CLK↑ | | | | | ns | | | Hold time | Data after CLK↑ | | | | | | | t <sub>h</sub> | *** , | CLKEN after CLK↑ | | | | | ns | # timing requirements over recommended operating free-air temperature range, $V_{CC}$ = 3.3 V $\pm$ 0.3 V (unless otherwise noted) (see Figure 2) | | | | SN54ALVT | H16721 | SN74ALVT | H16721 | UNIT | | |-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------|----------|--------|------|--| | | | | MIN | MAX | MIN | MAX | UNII | | | fclock | Clock frequency | | | | | | MHz | | | t <sub>W</sub> | Pulse duration, CLK high or low | | | | | | ns | | | | | Data before CLK↑ | | | | | | | | t <sub>su</sub> | Setup time | CLKEN before CLK↑ | | | | | ns | | | 4. | The Later of L | Data after CLK↑ | | | | | | | | <sup>t</sup> h | Hold time | CLKEN after CLK↑ | | | | | ns | | # switching characteristics over recommended operating free-air temperature range, $C_L$ = 30 pF, $V_{CC}$ = 2.5 V $\pm$ 0.2 V (unless otherwise noted) (see Figure 1) | PARAMETER | FROM | то | SN54ALVT | H16721 | SN74ALVT | UNIT | | |------------------|---------------|----------|----------|--------|----------|------|------| | PARAMETER | (INPUT) | (OUTPUT) | MIN | MAX | MIN | MAX | UNII | | f <sub>max</sub> | | | | | | | MHz | | <sup>t</sup> PLH | CLK | CLK Q | | | | | ns | | <sup>t</sup> PHL | CLN | Q | | | | | 115 | | <sup>t</sup> PZH | <del>OE</del> | Q | | | | | ns | | <sup>t</sup> PZL | | Q | | | | | 115 | | <sup>t</sup> PHZ | - OE | Q | | · | | · | ns | | t <sub>PLZ</sub> | ] | | | | | | 113 | # switching characteristics over recommended operating free-air temperature range, $C_L$ = 50 pF, $V_{CC}$ = 3.3 V $\pm$ 0.3 V (unless otherwise noted) (see Figure 2) | PARAMETER | FROM | 16 | | TO SN54ALVTH | TO SN54ALVTH16721 SN74ALVTH1672 | | UNIT | |------------------|---------|----------|---------|--------------|---------------------------------|--|------| | FARAIMETER | (INPUT) | (OUTPUT) | MIN MAX | MIN MAX | ONII | | | | f <sub>max</sub> | | | | | MHz | | | | <sup>t</sup> PLH | CLK | CLK Q | | | ns | | | | <sup>t</sup> PHL | | Q | | | 113 | | | | <sup>t</sup> PZH | ŌĒ | Q | | | ns | | | | tPZL | OE . | ά | | | 115 | | | | <sup>t</sup> PHZ | ŌĒ | Q | | | ns | | | | t <sub>PLZ</sub> | OE . | 3 | | | ] ''s | | | PRODUCT PREVIEW SCES139A - JULY 1998 - REVISED JANUARY 1999 # PARAMETER MEASUREMENT INFORMATION $V_{CC}$ = 2.5 V $\pm$ 0.2 V NOTES: A. C<sub>L</sub> includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR $\leq$ 10 MHz, $Z_O = 50~\Omega$ , $t_f \leq$ 2 ns, $t_f \leq$ 2 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms SN54ALVTH16721, SN74ALVTH16721 # PARAMETER MEASUREMENT INFORMATION $V_{CC}$ = 3.3 V $\pm$ 0.3 V - NOTES: A. C<sub>I</sub> includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR $\leq$ 10 MHz, $Z_O = 50~\Omega$ , $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 2. Load Circuit and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated