
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
April 29, 1999

Implementing a Reframe Controller for the CY7B933
HOTLink™ Receiver in a CY37032 CPLD

Introduction
This application note describes a reframe controller for the
Cypress CY7B933 HOTLink™ Receiver. The primary func-
tion of the controller is to monitor the Receive Violation Sym-
bol output, RVS, from the CY7B933 in order to detect framing
errors and, under the correct conditions, assert the Reframe
signal, RF, to the CY7B933. The controller function is de-
signed with a state machine, a few counters, and some de-
code logic. All are implemented in VHDL and fit into a Cypress
CY37032 32-macrocell CPLD. The exact implementation in
this application note makes several assumptions about the
next-higher-level controller that may not be universally appli-
cable. However, the source code for the design is provided in
Appendix A at the end of this application note so that modifi-
cation and customization for other interfaces is easily
possible.

Why Reframing is Necessary
The CY7B923 and CY7B933 HOTLink Transmitter and Re-
ceiver are a pair of chips for high-speed point-to-point serial
data communication. The CY7B923 is the transmitter, and the
CY7B933 is the receiver. The CY7B923 takes in an 8-bit byte
at a frequency between 16 and 33 MHz, encodes it into 10
bits, does a parallel-to-serial conversion, and then transmits
the serial data at ten times the byte-rate clock (about 160 to
330 Megabits per second (Mbps)). At the other end of the link,
the CY7B933 receives the serial data, does a serial-to-paral-
lel conversion, unencodes the data back into its original form,
and shifts the 8-bit parallel data out at the same byte-rate
clock frequency used by the transmitter. (Note: the chips can
also transmit and receive 10 bits of unencoded data. For a full
description of the encoding and decoding functions, see the
CY7B923/933 datasheet.)

The key element in the data-and-clock-recovery circuit on the
receiver is the phase-locked loop (PLL) on the chip. It is trig-
gered by the transitions in the incoming data stream, and it is
used to both separate the data stream into individual bits and
to generate the byte-rate clock going out of the chip. Once the
PLL achieves synchronization with the incoming serial data
stream and is receiving bits properly, the receiver must be
given a reference point that will set the byte boundaries in the
bit stream. This is done by the framing circuitry. Whenever the
receiver’s RF (reframe) input is asserted, the receiver’s fram-
ing logic will check the incoming bit stream for the special
pattern that defines a byte boundary. When this is found, the
receiver logic sets a reference point and simply counts bits
from that point on so it can properly execute the serial-to-par-
allel conversion on subsequent byte boundaries, and properly
align the byte-rate clock rising edge.

Thus, framing is always required when the receiver begins
receiving data for the first time, either at power-up or after
switching from one transmitter source to another. Periodic re-

framing may also be necessary due to other conditions. If the
PLL goes out of lock—that is, if it loses its synchronization
with the incoming serial bit stream for any reason—the recov-
ered data will be erroneous and the framing boundary infor-
mation will be lost. Once the PLL gets back into synchroniza-
tion with the incoming bit stream, it will be necessary to force
the receiver to reframe in order to re-establish the proper byte
boundary point.

Using RVS to Know When to Reframe
The PLL out-of-lock condition can be detected by the behav-
ior of the RVS output of the CY7B933 receiver. The CY7B933
asserts RVS when it detects an error in the bit stream. Infre-
quent errors, due to random noise in the environment or at-
tenuation by the transmission medium, for example, are ex-
pected and do not necessarily mean that the PLL is out of lock
or that the data needs to be reframed. Too many errors in too
short a time indicates that the PLL has lost lock and reframing
is necessary. The benchmark chosen in this controller is 16
errors occurring in a period of 64 bytes. If the controller counts
RVS asserted 16 times during a 64-byte period, it will assume
the PLL has lost lock and will assert RF to the receiver to force
it to reframe.

The 16-out-of-64 benchmark is somewhat arbitrarily chosen,
but it is justified by the fact that when the PLL is in lock, you
would normally expect to see significantly fewer errors. The
fact that 16 out of 64 is the criteria used does not mean that
15 out of 64, or 14 out of 64, etc., are acceptable error rates
and that the PLL is not out of lock in these cases as well. But,
it is fairly certain that if the PLL does go out of lock, you will
get at least 16 errors in 64 byte-times, very quickly. Further-
more, there are counters inside the HOTLink Receiver that
detect this same condition (16 errors in a 64-byte period) and
when this detection occurs inside the CY7B933, it forces the
PLL to re-lock onto the serial input data stream. Even if the
PLL is out of lock, if fewer than 16 errors are detected in a
64-byte period, the PLL will not be forced to re-synchronize
with the data stream and will stay out-of-lock until that condi-
tion is detected. Therefore, for consistency, the same criteria
was selected for the reframe controller.

Additional Functionality of the Reframe
Controller
The reframe controller itself interfaces to a higher-level con-
troller that controls the entire receiver system. That
higher-level controller can force the reframe controller to ini-
tiate framing in the CY7B933, regardless of any errors. There
are two ways to do this. The first is with the DO_REFRAME
signal, which the higher-level controller asserts when it wants
the reframe controller to go through the same procedure it
goes through to initiate framing when an out-of-lock condition
occurs. If the reframe controller sees this signal asserted, it
acts just like it had detected an out-of-lock condition. The oth-

Reframe Controller for the HOTLink Receiver

2

er way the higher-level controller can force a reframe is by
asserting its FORCE_RF output. This simply forces the re-
frame controller’s RF output HIGH and does not cause the
internal logic or state machine to change. The reframe con-
troller’s RF output will stay asserted as long as its
FORCE_RF input remains asserted.

The higher-level controller will normally assert
DO_REFRAME on power-up or when the transmitter source
is switched on in order to find the initial byte-boundary, as
described above. The FORCE_RF signal could be used for
any reason depending on specific system requirements. The
most likely reason to use it is to force multibyte framing. When
the receiver does multibyte framing, instead of looking for a
single byte-boundary-indicating character, the receiver looks
to detect two of these special characters within any four-byte
sequence. This is a more reliable way of finding the byte
boundary, simply because it causes the framing circuitry to
verify its first find with another one. This may be useful in
particularly noisy environments. To cause the receiver to do
multibyte framing, you must assert its RF input for 2048 con-
secutive cycles; this is something the reframe controller
would not ordinarily do. The higher-level controller can cause
this to happen by asserting FORCE_RF to the reframe con-
troller for 2048 cycles, thus causing its RF output to be assert-
ed for the same length of time.

The reframe controller also implements a basic handshake
with the higher-level controller to make sure the two control-
lers’ operations stay consistent after forced reframes. When-
ever the higher-level controller uses the DO_REFRAME sig-
nal to force the reframe controller to initiate framing, it will
keep that signal asserted until the reframe controller asserts
RFDONE_HS. This signal from the reframe controller indi-
cates that the receiver has finished its reframing. The
higher-level controller will then assert RFDONE_ACK, which
acknowledges receipt of RFDONE_HS, and both the reframe
controller and the higher-level controller will return to the state
they normally return to following a reframe.

In addition to the operations described above, the reframe
controller also provides a decoding function. When the
HOTLink Receiver detects a data error and asserts RVS, it
also puts the code for the type of error on its eight data out-
puts, D7–D0. The reframe controller decodes these signals
and asserts one of two outputs, UNDEF_CHAR or
RDISP_ERR, depending on the exact type of error decoded.
The two types of errors are an undefined-character error and
a running-disparity error. A running-disparity error means that
the character received had too many consecutive 1s or 0s to
be a valid byte of data (the purpose of the eight-bit-to-ten-bit
encoding mentioned earlier is to encode the data in such a
way as to minimize the imbalance of 1s and 0s in the bit
stream). If the reframe controller detects the code for a run-
ning-disparity error, it will assert the RDISP_ERR output. If
the received character has the correct running disparity but is
not a valid code for any character, then it is an unde-
fined-character error, and the reframe controller will assert
the UNDEF_CHAR output instead.

Design and Implementation
The out-of-lock detection, RF control, higher-level controller
interface, and error-type decoding are implemented with a
simple state machine, a few internal counters, and some de-
coding logic, and it is all fit into a 32-macrocell CY37032
CPLD (for more information on this CPLD, please refer to oth-

er application notes in the PLD section of the Cypress website
(www.cypress.com) and to the CY37032 datasheet). The de-
sign was done in VHDL and compiled with Cypress’s Warp™
PLD design tool. The receiver system, the reframe controller’s
interface, and the details of the design of the internal state
machine, counters, and logic are described in detail in the rest
of this section.

Receiver System

Figure 1 shows where this reframe controller fits into the over-
all system. The CY7B933 receiver connects (through a phys-
ical connector) to the actual transmission medium, which can
be either twisted pair, coaxial cable, or fiberoptic cable. The
reframe controller interfaces to the receiver, and it also inter-
faces to the higher-level system controller.

Controller Interface

The complete set of reframe controller inputs and outputs is
shown in Figure 2, and their source or destination, polarity,
and functionality are described below.

Inputs

RF_ENABLE. Overall enable. It comes from a higher-level
controller. When asserted (HIGH), reframe controller is en-
abled. When deasserted, reframe controller is disabled and
does not operate.

CLK. Clock signal to the reframe controller that comes from
the recovered byte-rate-clock output, RCLK, of the CY7B933,
and is also used in the rest of the system as the system clock.

RESET. Resets the state machine and the internal counters
and status registers (HIGH = asserted).

RVS. Received Violation Symbol. It comes from RVS output
of the CY7B933 (HIGH = asserted).

FORCE_RF. When asserted, this forces the RF output to also
be asserted regardless of other conditions. It comes from a
higher-level controller (HIGH = asserted).

DO_REFRAME. When asserted, it causes internal state ma-
chine to initiate framing in the receiver just as if it had detected
an out-of-lock condition. It comes from higher-level controller
(HIGH = asserted).

RFDONE_ACK. Handshake signal from the higher-level con-
troller acknowledging that it received confirmation that the re-
frame controller completed the framing procedure. The hand-
shake is only done when the framing was triggered by the
DO_REFRAME signal, not by an out-of-lock condition
(HIGH = asserted).

RDY. Ready signal. It comes from the CY7B933 RDY output
and indicates to the reframe controller that the receiver has
completed the reframe operation (LOW = asserted).

D[7:0], SC/D. Eight-bit data byte and control/data indicator bit
from the CY7B933 receiver. The information on these lines
can be decoded during a receive violation to determine the
error type.

Outputs

RF. Reframe output. It goes to the RF input of the CY7B933
receiver and causes the HOTLink Receiver to begin a framing
operation on the incoming data stream (HIGH = asserted).

RFDONE_HS. This is the handshake signal to the higher-lev-
el controller telling it that the reframe it requested with the

Reframe Controller for the HOTLink Receiver

3

DO_REFRAME signal has been completed (HIGH =
asserted).

OUT_OF_LOCK. This signal indicates that the HOTLink Re-
ceiver’s PLL has gone out of lock with the incoming serial bit
stream. This is inferred by counting sixteen or more RVS as-
sertions in a single 64-byte period. Once asserted, it remains
asserted until the PLL regains lock and reframing has been
accomplished (HIGH = asserted).

ERROR. When asserted (HIGH) it indicates to the
higher-level controller that an error of some type (as indicated
by the RVS signal from the receiver) has occurred.

UNDEF_CHAR. This is an undefined-character-error signal,
one of two types of errors that can be decoded from the
D7–D0, SC/D inputs during receive violations. This signal is

only valid when the ERROR output is also asserted, and it can
only be asserted when RDISP_ERR is deasserted (HIGH =
asserted).

RDISP_ERR. Running-disparity-error signal. This is the other
of the two types of errors that can be decoded from the
D7–D0, SC/D inputs during data-receive violations. This sig-
nal is only valid when the ERROR output is also asserted, and
it can only be asserted when UNDEF_CHAR is deasserted
(HIGH = asserted.)

Counters

The primary function of the controller, which is to detect the
out-of-lock condition by monitoring RVS and initiate a reframe
when necessary, is implemented through the use of two
counters. The VHDL for this function is shown in Figure 3. The

Figure 1. Block Diagram

Figure 2. Controller Inputs and Outputs

FIFO
CY7B933
HOTLink
Receiver

Reframe
Controller
(CY37032)

Higher-Level
Controller

CY7B923
HOTLink

Transmitter

TRANSMITTER SYSTEM

RECEIVER SYSTEM

8
D7–D0, SC/D

CLK

RF_ENABLE

RESET

RVS

FORCE_RF

DO_REFRAME

RFDONE_ACK

RDY RFDONE_HS

OUT_OF_LOCK

ERROR

RDISP_ERR

UNDEF_CHAR

RF

Reframe Controller

CY37032 CPLD

Reframe Controller for the HOTLink Receiver

4

first counter, rcvdbyts_count, is a seven-bit counter that
counts the number of bytes received (0 to 64) and the second
counter, error_count, is a five-bit counter that counts the num-
ber of times that RVS is asserted. If error_count reaches 16
before rcvdbyts_count reaches 64, then the out-of-lock con-
dition will be declared. If rcvdbyts_count reaches 64 before
error_count reaches 16, then fewer than 16 errors occurred
in the given 64-byte window and out-of-lock is not declared. If
rcvdbyts_count reaches 64 before error_count reaches 16,
both rcvdbyts_count and error_count are set back to zero and
a new 64-byte window begins. If the out-of-lock condition is
declared (error_count = 16 and rcvdbyts_count < 64), then
the out-of-lock flip-flop is set to HIGH and a reframe operation
is initiated. The out-of-lock flip-flop stays HIGH until the re-
ceiver successfully reframes.

At that point, the out-of-lock flip-flop is set back to LOW and
the search for the out-of-lock condition is started again.

State Machine

The state machine is described by the diagram in Figure 4,
and the VHDL code that implements it is shown in Figure 5.

IDLE state

The normal, quiescent state of the state machine, and the
state it enters upon reset, is IDLE. In this state, the RF output
is deasserted and the state machine waits for either a
DO_REFRAME input from the outside or for the counters to
set the out-of-lock flip-flop. If neither of these conditions occur,
the state machine simply stays in the IDLE state. Once either
one of these conditions occurs, the state machine must ini-
tiate a reframe, so it will go to the START_REFRAME state.

-- relevant VHDL code for counter functions

signal count2: bit_vector(0 to 1); -- 2-bit counter
signal error_count: bit_vector(0 to 4); -- 5-bit counter
signal rcvdbyts_count: bit_vector(0 to 6); -- 7-bit counter

counters: process (CLK) begin

if (clk’event and clk = ’1’) then

if (reset = ’1’) then
fb_out_of_lock <= ’0’;
rcvdbyts_count <= “0000000";
error_count <= “00000";

elsif (error_count = “10000") then
fb_out_of_lock <= ’1’;
rcvdbyts_count <= “0000000";
error_count <= “00000";

elsif (rcvdbyts_count = “1000000") then
rcvdbyts_count <= “0000000";
error_count <= “00000";

else
rcvdbyts_count <= rcvdbyts_count + 1;
if (RVS = ’1’) then

error_count <= error_count + 1;
end if;

end if;

if (current_state = LOOK_FOR_xRDY) and (xRDY = ’0’) then
fb_out_of_lock <= ’0’;

end if;

if (current_state = COUNT_2_CLOCKS) then
count2 <= count2 + 1;

else
count2 <= “00";

end if;

end if;

end process; --counters

Figure 3. VHDL for Counter Functions

Reframe Controller for the HOTLink Receiver

5

START_REFRAME state

In the START_REFRAME state, RF is asserted, and the state
machine unconditionally transitions to the
COUNT_2_CLOCKS state.

COUNT_2_CLOCKS state

The COUNT_2_CLOCKS state enables a two-bit counter to
start counting incoming clock cycles. After two clock cycles
have been counted, the state machine transitions to the
LOOK_FOR_xRDY state. Two clock cycles must be counted
before looking for the RDY signal from the outside because a
total of three clocks must pass after RF is asserted until the
value of RDY can be guaranteed valid (see the “HOTLink
CY7B933 RDY Pin Description” application note for more de-
tails on this). One clock cycle passed during the
START_REFRAME state, so the COUNT_2_CLOCKS state

is used to count two more clock cycles to get to the require-
ment of three. RF is asserted throughout this state.

LOOK_FOR_xRDY state

On the fourth clock cycle from the start of RF, the value of RDY
is guaranteed to be valid and the state machine, in the
LOOK_FOR_xRDY state, continues to assert RF and waits
until the HOTLink Receiver asserts RDY. Once the receiver
asserts RDY, it has successfully reframed and is ready to re-
sume normal receiver operation. Thus, once an asserted
RDY is detected in the LOOK_FOR_xRDY state, the state
machine exits that state and goes back to the IDLE state. If
the reframe was started by an out-of-lock detection, the tran-
sition back to the IDLE state is immediate; if the reframe was
started by the DO_REFRAME input, then the state machine
goes to the HANDSHAKE state first.

Figure 4. State Diagram

IDLE

DISABLED

START
REFRAME COUNT 2

CLOCKS

LOOK
FOR
xRDY

HAND
SHAKE

(COUNT2 ? 2)

(OUT_OF_LOCK = 1)
OR

(DO_REFRAME = 1)

(OUT_OF_LOCK = 0)
AND

(DO_REFRAME = 0)

(RDY = 0) AND
(DO_REFRAME = 0)

(RDY = 0)
AND

(DO_REFRAME = 1)

from any state

(RESET = 1)

(COUNT2 = 2)

(RDY = 1)

(RFDONE_ACK = 1)

(RFDONE_ACK = 0)

(RF_ENABLE = 1)

(RF_ENABLE = 0)

from any state

Reframe Controller for the HOTLink Receiver

6

-- Relevant VHDL code for state machine

subtype StateType is bit_vector(0 to 2); -- State Type
constant DISABLED: StateType := b“111"; -- State Defns.
constant IDLE: StateType := b“000";
constant START_REFRAME: StateType := b“001";
constant COUNT_2_CLOCKS: StateType := b“010";
constant LOOK_FOR_xRDY: StateType := b“011";
constant HANDSHAKE: StateType := b“100";
signal current_state, next_state : StateType; --State declaration

-- State Machine Description

if (RESET = ’1’) then
next_state <= IDLE;

elsif (RF_ENABLE = ’0’) then
next_state <= DISABLED;

else
case current_state is

when IDLE =>
if (fb_OUT_OF_LOCK = ’1’) or (DO_REFRAME = ’1’) then

next_state <= START_REFRAME;
else

next_state <= current_state;
end if;

when START_REFRAME =>
next_state <= Count_2_Clocks;

when COUNT_2_CLOCKS =>
if (count2 = “10") then

next_state <= LOOK_FOR_xRDY;
else

next_state <= current_state;
end if;

when LOOK_FOR_xRDY =>
if (xRDY = ’0’) and (DO_REFRAME = ’1’) then

next_state <= HANDSHAKE;
elsif (xRDY = ’0’) and (DO_REFRAME = ’0’) then

next_state <= IDLE;
else

next_state <= current_state;
end if;

when HANDSHAKE =>
if (RFDONE_ACK = ’1’) then

next_state <= IDLE;
else

next_state <= current_state;
end if;

Figure 5. VDHL Code for State Machine

Reframe Controller for the HOTLink Receiver

7

HANDSHAKE state

The HANDSHAKE state is used to make sure the reframe
controller and the higher-level controller are consistent with
each other. The only way this state will ever be entered is if
the higher-level controller initiated a reframe by asserting
DO_REFRAME to the reframe controller. Once that reframe
has been completed by the receiver, the reframe controller
communicates this to the higher-level controller by asserting
RFDONE_HS. Once the higher-level controller acknowledg-
es this assertion and is ready to proceed with normal receiv-
ing operation, it will assert RFDONE_ACK as confirmation to
the reframe controller. It will simultaneously deassert
DO_REFRAME so that once the state machine goes back to
the IDLE state, that input is deasserted and does not errone-
ously cause another immediate pass into the reframe proce-
dure. Once the state machine detects the RFDONE_ACK as-
sertion, it exits the HANDSHAKE state and returns to the
IDLE state. The RF operation is deasserted throughout the
HANDSHAKE state.

DISABLED state

There is one more state, the DISABLED state, which is treat-
ed separately. As long as RF_ENABLE, the overall controller
enable, is asserted, the state machine will never enter this
state. If RF_ENABLE gets deasserted, the state machine will
transition to the DISABLED state no matter what state it was
in, and it will stay there until RF_ENABLE is once again as-
serted. Once RF_ENABLE is reasserted, the state machine
goes to the IDLE state and resumes normal operation.

It was mentioned previously that the out-of-lock flip-flop is set
when the out-of-lock condition is detected, and it stays set
until the reframe has been completed. The exact time when
the OUT_OF_LOCK flip-flop gets cleared is at the rising clock
edge when the state machine exits the LOOK_FOR_xRDY
state. This is because that is the exact point where the receiv-
er has signalled to the controller, with RDY, that it has suc-
cessfully competed the reframe.

Decode Logic

The error-decode logic is very straightforward, and the VHDL
code for it is shown in Figure 6. The ERROR output is a reg-

when DISABLED =>
if (RF_ENABLE = ’0’) then

next_state <= current_state;
else

next_state <= IDLE;
end if;

end case;
end if;

if (clk’event and clk = ’1’) then
current_state <= next_state;

end if;

Figure 5. VDHL Code for State Machine (continued)

-- relevant VHDL code for Decode Logic

if (clk’event and clk = ’1’) then

if (RVS = ’1’) then
ERROR <= ’1’;
if (D = x“E4" or D = x”E2" or D = x“E1") then

UNDEF_CHAR <= ’0’;
RDISP_ERR <= ’1’;

else
UNDEF_CHAR <= ’1’;
RDISP_ERR <= ’0’;

end if;
else

ERROR <= ’0’;
UNDEF_CHAR <= ’0’;
RDISP_ERR <= ’0’;

end if;

end if;

Figure 6. VHDL Code for Decode Logic

Reframe Controller for the HOTLink Receiver

8

istered version of the RVS input. The RDISP_ERR and
UNDEF_CHAR outputs are decoded from the D7–D0, SC/D
inputs. These outputs are also registered.

When the receiver asserts RVS, it will also put a code for the
error type on its eight data outputs. If this code is E4, E2, or
E1 (hex), it indicates the error is a running-disparity error, (ex-
plained earlier), and the RDISP_ERR output is asserted. If it
is any other hex code, the receiver has detected some kind of
illegal or undefined character, and the UNDEF_CHAR output
will be asserted instead. These outputs are mutually exclu-
sive: if one is asserted, the other must be deasserted. How-
ever, it is only meaningful to decode the data outputs when
an error condition is detected, so the ERROR signal must be
examined by the higher-level controller as well. If ERROR is
not asserted, the output from RDISP_ERR and
UNDEF_CHAR is no longer valid.

VHDL, CY37032 Utilization, and CY37032
Speed Considerations
The complete VHDL description for this design is given in
Appendix A. The full source code consists of the fragments
shown throughout this application note along with the other
code necessary to mesh it together, (process declarations,
signal declarations, and package-entity declarations). As the
fragments and complete source file show, VHDL is a very
simple, efficient way for describing PLD designs. For exam-
ple, the counter functions are simply bit vectors that are used
in the manner: COUNT <= COUNT + 1. Upper limits for the
counters, clearing functions, resets, and presets are all imple-
mented with a few simple IF-THEN-ELSE statements. The
entire state machine is implemented with a CASE statement
and IF-THEN-ELSE statements that have a straightforward,
natural, one-to-one correspondence with the bubble diagram
shown in Figure 4. The entire set of decode logic is imple-
mented in a single IF-THEN-ELSE clause. Furthermore, the
VHDL code provided is easy to understand and can be very
easily modified. For example, it can be modified to interface
to different higher-level-controller interfaces than the one as-

sumed in this application note, or it could be incorporated into
the higher-level controller design, with that design consisting
of other VHDL code and implemented in a larger FLASH370™
CPLD or even a gate array.

This design used all 32 of the CY37032’s macrocells and 37
of its 37 I/O and input pins. It could have used fewer pins if
necessary, by making the various counters be internal
counters only. The outputs of the counters were brought out
to output pins in this example, however, for easier simulation
and debugging. The speed of the CY37032 ranges from 125
MHz (with a 10-ns combinatorial propagation delay and a
6.5-ns clock-to-output time) to 222 MHz (with a 5-ns combi-
natorial propagation delay and a blazing 4-ns clock-to-output
time). For this application, the maximum byte-rate clock of the
CY7B933 is 33 MHz, and this and the corresponding set-up
and hold times on the CY7B933 make the CY37032-125 quite
sufficient. The higher-level controller may have tighter timing
requirements, but there is plenty of speed to be gained by
going to the faster speed bins of the CY37032. The design
can, thus, easily meet much faster system timing require-
ments.

Conclusion
The serial data received by the CY7B933 needs to be framed,
i.e., aligned to the proper byte boundaries. This must always
be done when the serial communication first begins, and it
must always be redone if the PLL loses lock on the incoming
serial bit stream. This application note described a controller
that will manage this operation and provided some guidelines
for determining when the periodic reframing is necessary. It
assumed a particular interface to a higher-level controller, but
the design was done in VHDL, which is provided in the ap-
pendix, to make it very easily modifiable and adaptable to any
other specific interface. The controller itself is implemented in
a CY37032 32-macrocell CPLD, which had sufficient resourc-
es and routability to implement this fairly substantial function.
It was able to do this exceeding system speed requirements
even in its slowest speed bin.

Reframe Controller for the HOTLink Receiver

9

Appendix A. VHDL Description

-- Application Note
-- Using a CY37032 as a HOTLink Reframe Controller
-- Cypress Semiconductor

entity CONTROLLER is port (
 CLK, RVS, RESET, xRDY, DO_REFRAME, FORCE_RFOUT, RFDONE_ACK,
 RF_ENABLE : in bit;
 D : in bit_vector(0 to 7);
 curr_st : out bit_vector (0 to 2);
 rb_cntr : out bit_vector (0 to 6);
 err_cntr : out bit_vector (0 to 4);
 RF, RFDONE_HS, OUT_OF_LOCK, UNDEF_CHAR, RDISP_ERR, ERROR : out bit
);
end CONTROLLER;

architecture CNTRL933 of CONTROLLER is

 subtype StateType is bit_vector(0 to 2); -- State Type
 constant DISABLED: StateType := b“111"; -- State Definitions
 constant IDLE: StateType := b“000";
 constant START_REFRAME: StateType := b“001";
 constant COUNT_2_CLOCKS: StateType := b“010";
 constant LOOK_FOR_xRDY: StateType := b“011";
 constant HANDSHAKE: StateType := b“100";

 signal current_state, next_state : StateType;
 signal fb_OUT_OF_LOCK : bit;

 signal count2: bit_vector(0 to 1); -- 2-bit counter
 signal error_count: bit_vector(0 to 4); -- 5-bit counter
 signal rcvdbyts_count: bit_vector(0 to 6); -- 7-bit counter

begin

counters: process (CLK) begin

if (clk’event and clk = ’1’) then

if (reset = ’1’) then
fb_out_of_lock <= ’0’;
rcvdbyts_count <= “0000000";
error_count <= “00000";

elsif (error_count = “10000") then
fb_out_of_lock <= ’1’;
rcvdbyts_count <= “0000000";
error_count <= “00000";

elsif (rcvdbyts_count = “1000000") then
rcvdbyts_count <= “0000000";
error_count <= “00000";

else
rcvdbyts_count <= rcvdbyts_count + 1;
if (RVS = ’1’) then

error_count <= error_count + 1;
end if;

end if;

Reframe Controller for the HOTLink Receiver

10

if (current_state = LOOK_FOR_xRDY) and (xRDY = ’0’) then
fb_out_of_lock <= ’0’;

end if;

if (current_state = COUNT_2_CLOCKS) then
count2 <= count2 + 1;

else
count2 <= “00";

end if;

end if;

end process; --counters

next_st_comb: process (fb_OUT_OF_LOCK, DO_REFRAME, COUNT2, xRDY,
 RFDONE_ACK, RESET, RF_ENABLE, current_state) begin

if (RESET = ’1’) then
next_state <= IDLE;

elsif (RF_ENABLE = ’0’) then
next_state <= DISABLED;

else
case current_state is

when IDLE =>

if (fb_OUT_OF_LOCK = ’1’) or (DO_REFRAME = ’1’) then
next_state <= START_REFRAME;

else
next_state <= current_state;

end if;

when START_REFRAME =>

next_state <= Count_2_Clocks;

when COUNT_2_CLOCKS =>

if (count2 = “11") then
next_state <= LOOK_FOR_xRDY;

else
next_state <= current_state;

end if;

when LOOK_FOR_xRDY =>

if (xRDY = ’0’) and (DO_REFRAME = ’1’) then
next_state <= HANDSHAKE;

elsif (xRDY = ’0’) and (DO_REFRAME = ’0’) then
next_state <= IDLE;

else
next_state <= current_state;

end if;

Appendix A. VHDL Description (continued)

Reframe Controller for the HOTLink Receiver

11

when HANDSHAKE =>

if (RFDONE_ACK = ’1’) then
next_state <= IDLE;

else
next_state <= current_state;

end if;

when DISABLED =>

if (RF_ENABLE = ’0’) then
next_state <= current_state;

else
next_state <= IDLE;

end if;

end case;
end if;

end process; --next_st_comb

outp_comb: process (current_state, FORCE_RFOUT) begin

if (FORCE_RFOUT = ’1’) then
RF <= ’1’;

else
case current_state is

when IDLE =>
RF <= ’0’;
RFDONE_HS <= ’0’;

when START_REFRAME =>
RF <= ’1’;
RFDONE_HS <= ’0’;

when COUNT_2_CLOCKS =>
RF <= ’1’;
RFDONE_HS <= ’0’;

when LOOK_FOR_xRDY =>
RF <= ’1’;
RFDONE_HS <= ’0’;

when HANDSHAKE =>
RF <= ’0’;
RFDONE_HS <= ’1’;

end case;
end if;

end process; --outp_comb

Appendix A. VHDL Description (continued)

Reframe Controller for the HOTLink Receiver

© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

seq_assgnmnt: process (clk) begin

if (clk’event and clk = ’1’) then

current_state <= next_state;

if (RVS = ’1’) then
ERROR <= ’1’;
if (D = x“E4" or D = x”E2" or D = x“E1") then

UNDEF_CHAR <= ’0’;
RDISP_ERR <= ’1’;

else
UNDEF_CHAR <= ’1’;
RDISP_ERR <= ’0’;

end if;
else

ERROR <= ’0’;
UNDEF_CHAR <= ’0’;
RDISP_ERR <= ’0’;

end if;

end if;

end process; --seq_assgnmnt

-- concurrent assignment statements
-- outputs and local feedback signals made the same

curr_st <= current_state;
rb_cntr <= rcvdbyts_count;
err_cntr <= error_count;
OUT_OF_LOCK <= fb_out_of_lock;

end CNTRL933; -- end architecture

HOTLink, Warp, and FLASH370 are trademarks of Cypress Semiconductor Corporation.

Appendix A. VHDL Description (continued)

