PC9D17

Lead forming type (I type) and taping reel type (P type) are also available. (PC9D17I/PC9D17P)

Features

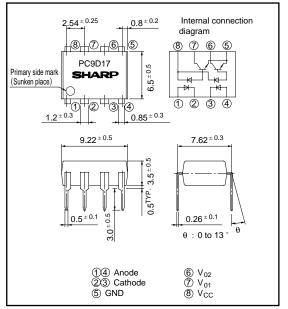
- 1. Built-in 2-channel
- 2. High speed response

(t_{PHL} , t_{PLH} : TYP. 0.3 μ s at R $_{L}$ = 1.9k Ω)

3. High instantaneous common mode rejection voltage

СМ_н: ТҮР. 1kV/ µ s

- 4. Standard dual-in-line package
- 5. Recognized by UL, file No. E64380


Applications

- 1. Electronic calculators, measuring instruments
- 2. Digital audio equipment
- 3. High speed receivers
- 4. Switching regulators

High Speed, High Common Mode Rejection, 2-channel OPIC Photocoupler

Outline Dimensions

(Unit : mm)

* "OPIC " (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.

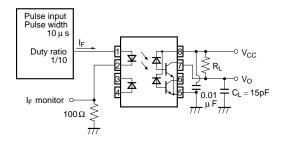
Absoult	e Maximum Ratings		('	$Ta = 25^{\circ}C)$
	Parameter	Symbol	Rating	Unit
	*1 Forward current	IF	25	mA
Input	^{*1} Reverse voltage	VR	5	V
	^{*1} Power dissipation	Р	45	mW
	Supply voltage	Vcc	- 0.5 to + 15	V
	^{*1} Output voltage	Vo	- 0.5 to + 15	V
Output	*1Output current	Io	8	mA
	^{*1} Power dissipation	Po	35	mW
	*2 Isolation voltage	V iso	2 500	V rms
	Operating temperature	T opr	- 55 to + 100	°C
	Storage temperature	T stg	- 55 to + 125	°C
	*3Soldering temperature	T sol	260	°C

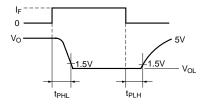
*1 Each channel

*2 40 to 60% RH, AC for 1 minute

*3 For 10 seconds

" In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."


Electr	o-optical Characteristics		(Unless otherw	ise speci	ified, Ta	= 0 to -	- 70°C)
	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
	Forward voltage	V _F	$Ta = 25^{\circ}C, I_F = 16mA$	-	1.7	1.95	V
Input	Reverse current	IR	$Ta = 25^{\circ}C, V_R = 5V$	-	-	10	μA
	Terminal capacitance	Ct	$Ta = 25^{\circ}C, V_F = 0, f = 1MH_Z$	-	60	250	pF
	High level output current (1)	I _{OH(1)}	$Ta = 25^{\circ}C$, $I_F = 0$, $V_{CC} = V_0 = 5.5V$	-	-	500	nA
	High level output current (2)	I _{OH(2)}	$Ta = 25^{\circ}C$, $I_F = 0$, $V_{CC} = V_0 = 15V$	-	-	1	μA
	High level output current (3)	I _{OH(3)}	$I_F = 0$, $V_{CC} = V_O = 15V$	-	-	50	μA
Output	Low level output voltage	V OL	$I_{\rm F}$ = 16mA, I $_{\rm O}$ = 2.4mA, $V_{\rm CC}$ = 4.5V	-	-	0.4	V
	Low level supply current	ICCL	I_F = 16mA, V_O = open, V_{CC} = 15V	-	400	-	μΑ
	High level supply current (1)	I _{CCH(1)}	$Ta = 25^{\circ}C$, I _F = 0, V _O = open V _{CC} = 15V	-	0.02	1	μA
	High level supply current (2)	I _{CCH(2)}	$I_F = 0$, $V_O = open$, $V_{CC} = 15V$		-	2	μA
	Current transfer ratio	CTR	Ta = 25 °C, I $_{\rm F}$ = 16mA, V $_{\rm O}$ = 0.4V, V $_{\rm CC}$ = 4.5V	19	-	-	%
	Isolation resistance	R _{ISO}	Ta = 25°C, DC500V, 40 to 60% RH	5 x 10 ¹⁰	1011	-	Ω
	Floating capacitance	Cf	$Ta = 25^{\circ}C, V = 0, f = 1MH_Z$	-	0.6	-	pF
Transfer charac- teristics	"High→Low" propagation delay time	t _{PHL}	$\label{eq:alpha} \begin{array}{ll} Ta = 25^{\circ}C, \ R_{\ L} = 1.9k\Omega & & \mbox{Fig. 1} \\ I_F = 16mA, \ V_{CC} = 5V & & \end{array}$	-	0.3	0.8	μs
	"Low→High" propagation delay time	t _{PLH}	$Ta = 25^{\circ}C, R_{L} = 1.9k\Omega$ $I_{F} = 16mA, V_{CC} = 5V$	-	0.3	0.8	μs
	Instantaneous common mode rejection voltage "High level output "	CM _H	$ \begin{array}{l} Ta = 25^{\circ}C, I_{F} = 0, R_{L} = 1.9 k \Omega \\ V_{CM} = 10 V p \text{-} p, \ V_{CC} = 5 V \end{array} \right. \label{eq:rescaled_field} $	-	1 000	-	V/ μs
	Instantaneous common mode rejection voltage "Low level output"	CML	$\label{eq:rescaled_formula} \begin{array}{ll} Ta = 25^{\circ}C, I_{F} = 16mA, R_{L} = 19k\Omega & \mbox{Fig. 2} \\ V_{CM} = 10Vp\mbox{-}p, V_{CC} = 5V \end{array}$	-	- 1 000	-	V/ μs


All typical values : at $Ta = 25^{\circ}C$

Recommended Operating Conditions

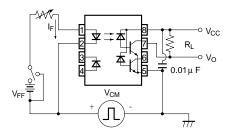

•					
Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Forward current	I_F	-	-	16	mA
Supply voltage	Vcc	-	5	-	V
Operating temperature	T opr	0	-	70	°C

Fig. 1 Test Circuit for Propagation Delay Time

Fig. 2 Test Circuit for Instantaneous Common Mode Rejection Voltage

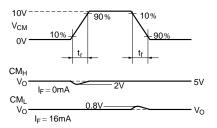


Fig. 3 Forward Current vs. Ambient Temperature

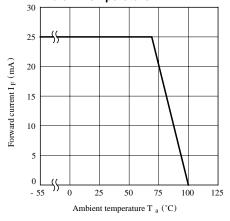


Fig. 5 Forward Current vs. Forward Voltage

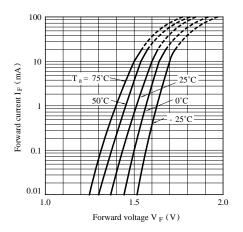


Fig. 4 Power Dissipation vs. Ambient Temperature

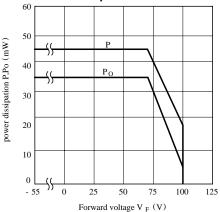
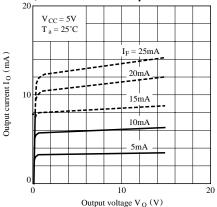
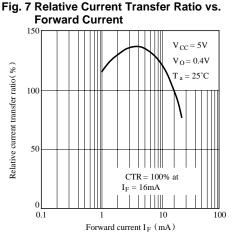




Fig. 6 Output Current vs. Output Voltage (Dotted line shows pulse characteristics)

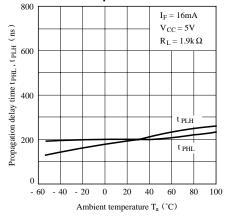


Fig.11 Output Voltage vs. Forward Current

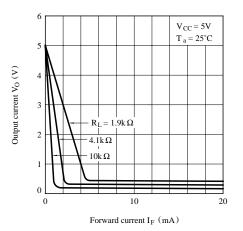


Fig. 8 Relative Current Transfer Ratio vs. Ambient Temperature

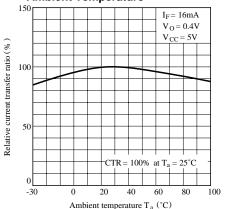
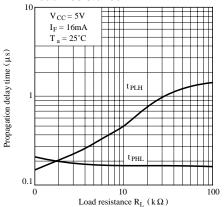
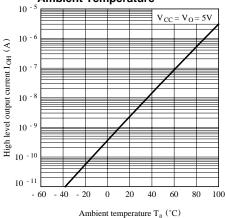
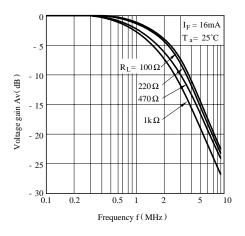


Fig.10 Propagation Delay Time vs. Load Resistance

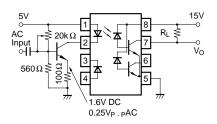

Fig.12 High Level Output Current vs. Ambient Temperature

Fig.13 Frequency Response

Test Circuit for Frequency Response

Precautions for Use

- (1) It is recommended that a by-pass capacitor of more than $0.01 \,\mu\,F$ is added between V_{cc} and GND near the device in order to stabilize power supply line.
- (2) Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics.
- (3) As for other general cautions, refer to the chapter "Precautions for Use".

NOTICE

- •The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- •Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- •Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - Personal computers
 - Office automation equipment
 - Telecommunication equipment [terminal]
 - Test and measurement equipment
 - Industrial control
 - Audio visual equipment
 - Consumer electronics

(ii)Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:

- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- Traffic signals
- Gas leakage sensor breakers
- Alarm equipment
- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- Space applications
- Telecommunication equipment [trunk lines]
- Nuclear power control equipment
- Medical and other life support equipment (e.g., scuba).
- •Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use.
- •If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- •This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- •Contact and consult with a SHARP representative if there are any questions about the contents of this publication.