MMVL809T1

Silicon Tuning Diode

This device is designed for 900 MHz frequency control and tuning applications. It provides solid–state reliability in replacement of mechanical tuning methods.

- Controlled and Uniform Tuning Ratio
- Surface Mount Package
- Available in 8 mm Tape and Reel
- Device Marking: 5K

ON Semiconductor

Formerly a Division of Motorola

http://onsemi.com

4.5 – 6.1 pF VOLTAGE VARIABLE CAPACITANCE DIODE

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
VR	Continuous Reverse Voltage	20	Vdc
ΙF	Peak Forward Current	20	mAdc

THERMAL CHARACTERISTICS

Symbol	Characteristic	Max	Unit
PD	Total Device Dissipation FR–5 Board,* T _A = 25°C Derate above 25°C	200 1.57	mW mW/°C
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	635	°C/W
TJ, T _{stg}	Junction and Storage Temperature	150	°C

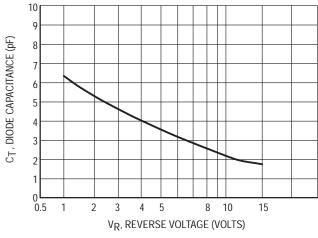
*FR-4 Minimum Pad

PLASTIC SOD-323 CASE 477

ORDERING INFORMATION

Device	Package	Shipping		
MMVL809T1	SOD-323	3000 / Tape & Reel		

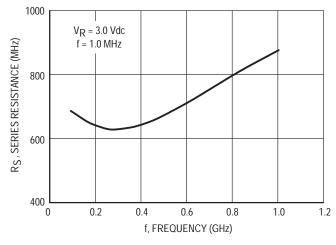
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic – All Types	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage ($I_R = 10 \mu Adc$)	V(BR)R	20	_	_	Vdc
Reverse Voltage Leakage Current (V _R = 15 Vdc)	IR	_	_	50	nAdc

	C _t , Diode Capacitance V _R = 2.0 Vdc, f = 1.0 MHz pF		Q, Figure of Merit V _R = 3.0 Vdc f = 500 MHz	C_R , Capacitance Ratio C_2/C_8 f = 1.0 MHz(1)		
Device Min		Тур	Max	Тур	Min	Max
MMVL809T1	4.5	5.3	6.1	75	1.8	2.6

^{1.} C_R is the ratio of C_t measured at 2.0 Vdc divided by C_t measured at 8.0 Vdc.

TYPICAL CHARACTERISTICS


1000

V_R = 3 Vdc T_A = 25°C T_A = 25°C 100 0.1 1.0 10 f, FREQUENCY (GHz)

Figure 1. Diode Capacitance

Figure 2. Figure of Merit

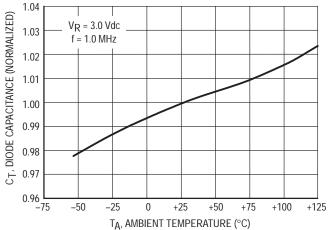
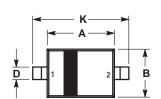
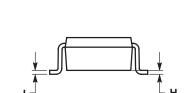



Figure 3. Series Resistance


Figure 4. Diode Capacitance

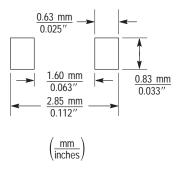
MMVL809T1

PACKAGE DIMENSIONS

SOD-323 PLASTIC PACKAGE CASE 477-02 ISSUE A

NOTE 3

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. LEAD THICKNESS SPECIFIED PER LIF DRAWING WITH SOLDER PLATING.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	1.60	1.80	0.063	0.071	
В	1.15	1.35	0.045	0.053	
С	0.80	1.00	0.031	0.039	
D	0.25	0.40	0.010	0.016	
Е	0.15 REF		0.006 REF		
Н	0.00	0.10	0.000	0.004	
J	0.089	0.177	0.0035	0.0070	
K	2.30	2.70	0.091	0.106	

STYLE 1: PIN 1. CATHODE 2. ANODE

SOD-323 Soldering Footprint

MMVL809T1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5487–8345 **Email**: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.