Order Number: MC10EP89/D Rev. 0.2, 06/1999

MC10EP89

SO-8, D SUFFIX 8-LEAD PLASTIC SOIC PACKAGE CASE 751

ORDERING INFORMATION

MC10EP89D SOIC

Product Preview

Coaxial Cable Driver

- 225ps Propagation Delay
- 3.5 GHz Toggle Frequency
- 1.4V Output Swings
- PECL mode: 3.0V to 5.5V V_{CC} with $V_{EE} = 0V$
- ECL mode: $0V V_{CC}$ with $V_{EE} = -3.0V$ to -5.5V
- Internal Input Resistors: Pulldown on D, Pulldown and Pullup on \overline{D}
- Q Output will default LOW with inputs open or at VEE
- ESD Protection: >4KV HBM, >200V MM
- New Differential Input Common Mode Range
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 152 devices

PIN DESCRIPTION

PIN	FUNCTION
$ \begin{array}{c} D, \overline{D} \\ Q0, Q1, \overline{Q0}, \overline{Q1} \end{array} $	ECL Data Inputs ECL Data Outputs

The MC10EP89 is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in digital video broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver produces swings 70% larger than a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize signal loss. The 1.4V swings allow for termination at both ends of the cable, while maintaining the 680mV swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard V_{CC} -2.0V. All of the DC parameters are tested with a 50 Ω to V_{CC} -3.0V load. The driver accepts a standard differential ECL input and can run off of the digital video broadcast standard –5.0V supply.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

© Motorola, Inc. 1999

ECLinPS Plus™ MC10EP89

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

MAXIMUM RATINGS*

Symbol	Parameter		Value	Unit
VEE	Power Supply (V _{CC} = 0V)	-6.0 to 0	VDC	
VCC	Power Supply (V _{EE} = 0V)		6.0 to 0	VDC
VI	Input Voltage (V _{CC} = 0V, V _I not more negative	e than V _{EE})	-6.0 to 0	VDC
VI	Input Voltage (VEE = 0V, VI not more positive	than V _{CC})	6.0 to 0	VDC
lout	Output Current	Continuous Surge	50 100	mA
TA	Operating Temperature Range		-40 to +85	°C
T _{stg}	Storage Temperature		–65 to +150	°C
θЈΑ	Thermal Resistance (Junction-to-Ambient)	Still Air 500lfpm	190 130	°C/W
θJC	Thermal Resistance (Junction-to-Case)		41 to 44 ± 5%	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C	desired)	265	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur.

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$; $V_{EE} = -5.5V$ to -3.0V) (Note 4.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)	TBD	30	TBD	TBD	32	TBD	TBD	34	TBD	mA
VOH	Output HIGH Voltage (Note 2.)	TBD	-1110	TBD	TBD	-1006	TBD	TBD	-910	TBD	mV
VOL	Output LOW Voltage (Note 2.)	TBD	-2480	TBD	TBD	-2450	TBD	TBD	-2411	TBD	mV
VIH	Input HIGH Voltage Single Ended	-1230		-890	-1130		-810	-1060		-720	mV
V _{IL}	Input LOW Voltage Single Ended	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 3.)	VEE	+2.0	0.0	VEE	+2.0	0.0	VEE	+2.0	0.0	V
lн	Input HIGH Current			150			150			150	μΑ
Iμ	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μА

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

- V_{CC} = 0V, V_{EE} = V_{EEmin} to V_{EEmax}, all other pins floating.
 All loading with 50 ohms to V_{CC}-3.0 volts.
 V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

- 4. Input and output parameters vary 1:1 with V_{CC}.

DC CHARACTERISTICS, LVPECL ($V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$) (Note 8.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 5.)	TBD	30	TBD	TBD	32	TBD	TBD	34	TBD	mA
VOH	Output HIGH Voltage (Note 6.)	TBD	2190	TBD	TBD	2294	TBD	TBD	2390	TBD	mV
VOL	Output LOW Voltage (Note 6.)	TBD	820	TBD	TBD	850	TBD	TBD	889	TBD	mV
VIH	Input HIGH Voltage Single Ended	2070		2410	2170		2490	2240		2580	mV
VIL	Input LOW Voltage Single Ended	1350		1800	1350		1820	1350		1855	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 7.)	2.0		3.3	2.0		3.3	2.0		3.3	V
ΊΗ	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current DDD	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

- V_{CC} = 3.3V, V_{EE} = 0V, all other pins floating.
 All loading with 50 ohms to V_{CC}-3.0 volts.
 V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.
 Input and output parameters vary 1:1 with V_{CC}.

ECLinPS Plus™ **MC10EP89**

DC CHARACTERISTICS, PECL ($V_{CC} = 5.0V \pm 0.5V$, $V_{EE} = 0V$) (Note 12.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 9.)	TBD	30	TBD	TBD	32	TBD	TBD	34	TBD	mA
VOH	Output HIGH Voltage (Note 10.)	TBD	3890	TBD	TBD	3994	TBD	TBD	4090	TBD	mV
VOL	Output LOW Voltage (Note 10.)	TBD	2520	TBD	TBD	2550	TBD	TBD	2589	TBD	mV
VIH	Input HIGH Voltage Single Ended	3770		4110	3870		4190	3940		4280	mV
V _{IL}	Input LOW Voltage Single Ended	3050		3500	3050		3520	3050		3555	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 11.)	2.0		5.0	2.0		5.0	2.0		5.0	V
lн	Input HIGH Current			150			150			150	μΑ
Iμ	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μА

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

AC CHARACTERISTICS ($V_{CC} = 0V$; $V_{EE} = -3.0V$ to -5.5V) or ($V_{CC} = 3.0V$ to 5.5V; $V_{EE} = 0V$)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fmax	Maximum Toggle Frequency (Note 13.)	TBD	TBD	TBD	TBD	1.25	TBD	TBD	TBD	TBD	GHz
tPLH, tPHL	Propagation Delay to Output Differential		295			295			295		ps
tSKEW	Duty Cycle Skew (Note 14.)		TBD			TBD			TBD		ps
[†] JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V _{PP}	Input Voltage Swing (Diff.)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)		TBD TBD			230 210			TBD TBD		ps

^{13.} F_{max} guaranteed for functionality only. V_{OL} and V_{OH} levels are guaranteed at DC only.

^{9.} $V_{CC} = 5.0V$, $V_{EE} = 0V$, all other pins floating.

^{10.} All loading with 50 ohms to V_{CC}-3.0 volts.

11. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

^{12.} Input and output parameters vary 1:1 with V_{CC}.

^{14.} Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

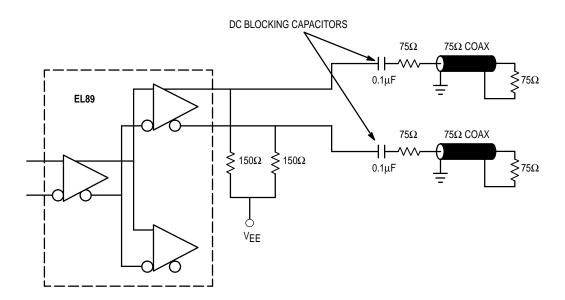



Figure 2. EP89 Termination Configuration

OUTLINE DIMENSIONS

SO-8, D SUFFIX PLASTIC SOIC PACKAGE CASE 751-06 ISSUE T

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- DIMENSIONS ARE IN MILLIMETER.
 DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL

	MILLIMETERS									
DIM	MIN	MAX								
Α	1.35	1.75								
A1	0.10	0.25								
В	0.35	0.49								
С	0.19	0.25								
D	4.80	5.00								
Е	3.80	4.00								
е	1.27	BSC								
Н	5.80	6.20								
h	0.25	0.50								
Ĺ	0.40	1.25								
θ	0.0	7 °								

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 Motorola Fax Back System - US & Canada ONLY 1-800-774-1848

- http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26629298

HOME PAGE: http://motorola.com/sps/

MC10EP89/D