MC10EP16

SO-8, D SUFFIX 8-LEAD PLASTIC SOIC PACKAGE CASE 751

> ORDERING INFORMATION MC10EP16D SOIC

Product Preview Differential Receiver

- 160ps Propagation Delay
- Maximum Frequency > 2.7GHz
- PECL mode: 3.0V to 5.5V V_{CC} with $V_{EE} = 0V$
- ECL mode: 0V V_{CC} with $V_{EE} = -3.0V$ to -5.5V
- Internal Input Resistors: Pulldown on D, Pulldown and Pullup on \overline{D}
- Q Output will default LOW with inputs open or at $V_{\mbox{\scriptsize EE}}$
- ESD Protection: >4KV HBM, >200V MM
- VBB Output
- New Differential Input Common Mode Range
- Moisture Sensitivity Level 1, Indefinite Time Out of Drypack
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count: 167 devices

The MC10EP16 is a differential receiver. The device is functionally equivalent to the EL16 and LVEL16 devices with higher performance capabilities. With output transition times significantly faster than the EL16 and LVEL16, the EP16 is ideally suited for interfacing with high frequency sources.

The EP16 provides a V_{BB} output for either single-ended use or as a DC bias for AC coupling to the device within the package. The V_{BB} pin should be used only as a bias for the EP16 as its current sink/source capability is limited. Whenever used, the V_{BB} pin should be bypassed to ground via a $0.01\mu f$ capacitor.

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

PIN DESCRIPTION						
PIN	FUNCTION					
D, <u>D</u> Q, <u>Q</u> V _{BB}	ECL Data Inputs ECL Data Outputs Ref. Voltage Output					

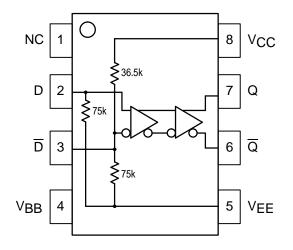


Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VEE	Power Supply ($V_{CC} = 0V$)	-6.0 to 0	VDC
V _{CC}	Power Supply (V _{EE} = 0V)	6.0 to 0	VDC
VI	Input Voltage (V _{CC} = 0V, V _I not more negative than V _{EE})	-6.0 to 0	VDC
VI	Input Voltage (V _{EE} = 0V, V _I not more positive than V _{CC})	6.0 to 0	VDC
lout	Output Current Continuous Surge	50 100	mA
IBB	V _{BB} Sink/Source Current†	± 0.5	mA
TA	Operating Temperature Range	-40 to +85	°C
T _{stg}	Storage Temperature	-65 to +150	°C
θJA	Thermal Resistance (Junction-to-Ambient) Still Air 500lfpm	190 130	°C/W
θJC	Thermal Resistance (Junction-to-Case)	41 to 44 ± 5%	°C/W
T _{sol}	Solder Temperature (<2 to 3 Seconds: 245°C desired)	265	°C

 * Maximum Ratings are those values beyond which damage to the device may occur.

† Use for inputs of same package only.

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 1.)	23	24	29	23	24	29	23	24	29	mA
VOH	Output HIGH Voltage (Note 2.)	-1135	-1060	-885	-1070	-945	-820	-1010	-885	-760	mV
VOL	Output LOW Voltage (Note 2.)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
VIH	Input HIGH Voltage Single Ended	-1210		-885	-1145		-820	-1085		-760	mV
VIL	Input LOW Voltage Single Ended	-1935		-1610	-1870		-1545	-1810		-1485	mV
V _{BB}	Output Voltage Reference	-1510	-1410	-1310	-1445	-1345	-1245	-1385	-1285	-1185	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 3.)	VEE	+2.0	0.0	VEE	+2.0	0.0	VEE	+2.0	0.0	V
Iн	Input HIGH Current			150			150			150	μΑ
ΙL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μA

DC CHARACTERISTICS, ECL/LVECL ($V_{CC} = 0V$; $V_{FF} = -5.5V$ to -3.0V) (Note 4.)

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained. 1. $V_{CC} = 0V$, $V_{EE} = V_{EEmin}$ to V_{EEmax} , all other pins floating. 2. All loading with 50 ohms to V_{CC} -2.0 volts. 3. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

4. Input and output parameters vary 1:1 with V_{CC} .

DC CHARACTERISTICS, LVPECL ($V_{CC} = 3.3V \pm 0.3V$, $V_{EE} = 0V$) (Note 8.)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 5.)	23	24	29	23	24	29	23	24	29	mA
VOH	Output HIGH Voltage (Note 6.)	2165	2240	2415	2230	2355	2480	2290	2415	2540	mV
VOL	Output LOW Voltage (Note 6.)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
VIH	Input HIGH Voltage Single Ended	2090		2415	2155		2480	2215		2540	mV
VIL	Input LOW Voltage Single Ended	1365		1690	1430		1755	1490		1815	mV
V _{BB}	Output Voltage Reference	1790	1890	1990	1855	1955	2055	1915	2015	2115	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 7.)	2.0		3.3	2.0		3.3	2.0		3.3	V
Ίн	Input HIGH Current			150			150			150	μΑ
ΙIL	Input LOW Current D D	0.5 150			0.5 -150			0.5 -150			μΑ

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.

5. $V_{CC} = 3.0V$, $V_{EE} = 0V$, all other pins floating. 6. All loading with 50 ohms to V_{CC} -2.0 volts. 7. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} . 8. Input and output parameters vary 1:1 with V_{CC} .

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
IEE	Power Supply Current (Note 9.)	23	24	29	23	24	29	23	24	29	mA
VOH	Output HIGH Voltage (Note 10.)	3865	3940	4115	3930	4055	4180	3990	4115	4240	mV
VOL	Output LOW Voltage (Note 10.)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
VIH	Input HIGH Voltage Single Ended	3790		4115	3855		4180	3915		4240	mV
V _{IL}	Input LOW Voltage Single Ended	3065		3390	3130		3455	3190		3515	mV
V _{BB}	Output Voltage Reference	3490	3590	3690	3555	3655	3755	3615	3715	3815	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Note 11.)	2.0		5.0	2.0		5.0	2.0		5.0	V
Iн	Input HIGH Current			150			150			150	μA
Ι _{ΙL}	Input LOW Current D D	0.5 150			0.5 -150			0.5 -150			μA

DC CHARACTERISTICS, PECL ($V_{CC} = 5.0V \pm 0.5V$, $V_{FF} = 0V$) (Note 12.)

NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. NOTE: 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.
9. V_{CC} = 5.0V, V_{EE} = 0V, all other pins floating.
10. All loading with 50 ohms to V_{CC}-2.0 volts.
11. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.
12. Input and output parameters vary 1:1 with V_{CC}.

AC CHARACTERISTICS (V_{CC} = 0V; V_{EE} = -3.0V to -5.5V) or (V_{CC} = 3.0V to 5.5V; V_{EE} = 0V)

			–40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency (Note 13.)	2.7			2.7			2.7			GHz
^t PLH, ^t PHL	Propagation Delay to Output Differential	100	160	240	100	160	240	120	190	280	ps
^t SKEW	Duty Cycle Skew (Note 14.)		5.0			5.0	20		5.0	20	ps
^t JITTER	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
VPP	Input Voltage Swing (Diff.)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	70	120	170	80	130	180	100	150	200	ps

 13. F_{max} guaranteed for functionality only. See Figure 2 for typical output swing. V_{OL} and V_{OH} levels are guaranteed at DC only.
 14. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

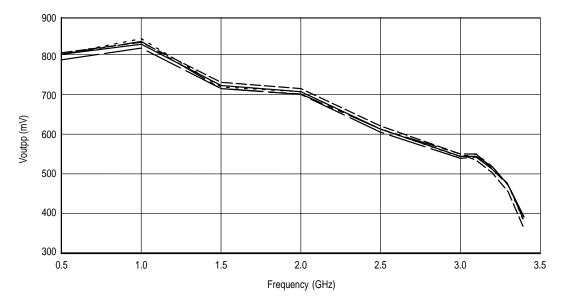
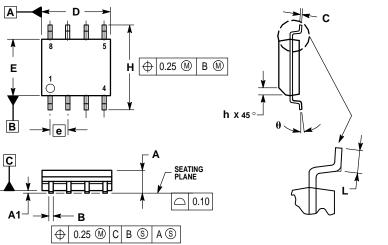



Figure 2. Typical Output Vpp vs. Frequency

OUTLINE DIMENSIONS

SO-8, D SUFFIX PLASTIC SOIC PACKAGE CASE 751-06 ISSUE T

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- DIMENSIONS ARE IN MILLIMETER.
 DIMENSION D AND E DO NOT INCLUDE MOLD
- DIMENSION D'AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- MAXIMUM MOLD FROM COSION 0.13 FER SIDE
 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 - PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS									
DIM	MIN	MAX								
Α	1.35	1.75								
A1	0.10	0.25								
В	0.35	0.49								
С	0.19	0.25								
D	4.80	5.00								
Е	3.80	4.00								
е	1.27	BSC								
Н	5.80	6.20								
h	0.25	0.50								

0.40

1.25

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and with such uninte

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1-800-521-6274

 Mfax™: RMFAX0@email.sps.mot.com
 - TOUCHTONE 1-602-244-6609

 Motorola Fax Back System
 - US & Canada ONLY 1-800-774-1848

 - http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26629298