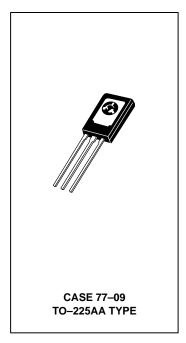
Plastic Medium Power Silicon NPN Transistor

 \dots designed for use as audio amplifiers and drivers utilizing complementary or quasi complementary circuits.

- DC Current Gain hFE = 40 (Min) @ IC = 0.15 Adc
- BD169 is complementary with BD170

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	80	
Collector–Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	VEBO	5	Vdc
Collector Current	IC	1.5	Adc
Base Current	IB	0.5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.25 8	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	20 160	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θJC	6.25	°C/W
Thermal Resistance, Junction to Ambient	$\theta_{\sf JA}$	100	°C/W

BD169

1.5 AMPERE
POWER TRANSISTOR
NPN SILICON
80 VOLTS
20 WATTS

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector–Emitter Sustaining Voltage* (IC = 0.1 Adc, IB = 0)	BV _{CEO}	80	_	Vdc
Collector Cutoff Current (V _{CB} = 80 Vdc, I _E = 0)	ICBO	_	0.1	mAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0)	IEBO	_	1.0	mAdc
DC current Gain (I _C = 0.15 A, V _{CE} = 2 V) (I _C = 0.5 A, V _{CE} = 2 V)	hFE*	40 15	_ _	
Collector–Emitter Saturation Voltage* (I _C = 0.5 Adc, I _B = 0.05 Adc)	VCE(sat)*	_	0.5	Vdc
Base–Emitter On Voltage* (I _C = 0.5 Adc, V _{CE} = 2.0 Vdc)	VBE(on)*	_	0.95	Vdc
Current Gain–Bandwidth Product (I _C = 500 mAdc, V _{CE} = 2 Vdc, f = 1.0 MHz)	fΤ	6.0	_	MHz

^{*} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

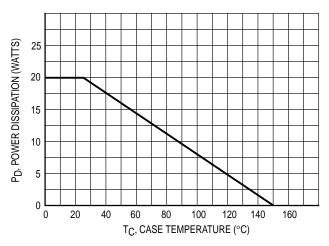


Figure 1. PD - TC Derating Curve

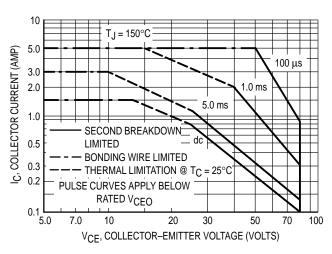


Figure 2. Safe Operating Area (see Note 1)

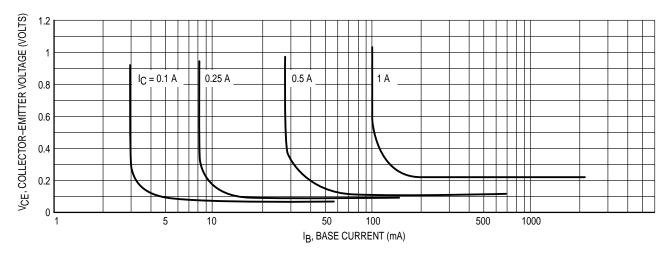


Figure 3. Collector Saturation Region

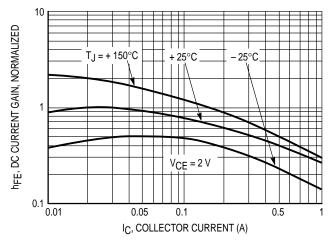
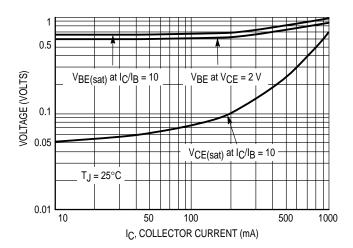
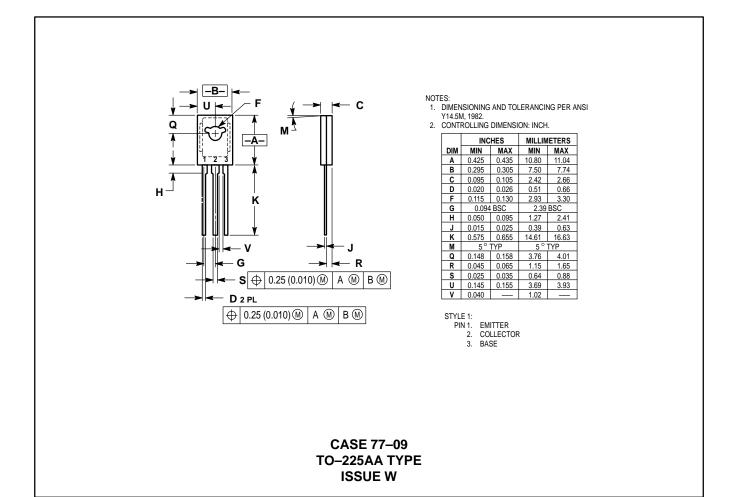


Figure 4. Current Gain




Figure 5. "On" Voltage

Note 1:

There are two limitations on the power handling ability of a transistor; average junction temperature and second breakdown. Safe operating area curves indicate $I_{\text{C}} - V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and manufacture of the part. Motor

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609
Motorola Fax Back System - US & Canada ONLY 1-800-774-1848 - http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

HOME PAGE: http://motorola.com/sps/

BD169/D