

MILITARY DATA SHEET

MNDS96F175M-X REV 0A0

Original Creation Date: 01/25/96 Last Update Date: 01/30/96 Last Major Revision Date: 01/25/96

RS-485 DIFFERENTIAL LINE RECEIVER

General Description

The DS96F175 is a high speed quad differential line receiver designed to meet EIA Standard RS-485. The DS96F175 offers improved performance due to the use of state-of-the-art L-Fast bipolar technology. The L-Fast technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS96F175 features lower power and an extended temperature range.

The DS96F175 has TRI-STATE outputs and is optimized for balanced multipoint data bus transmission at rates up to 15 Mbps. The receivers feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200mV over a common mode input voltage range of -7V to +12V. The receivers are therefore suitable for multipoint applications in noisy environments. The DS96F175 features separate active high Enables for each receiver pair.

Compatible RS-485 drivers, transceivers, and repeaters are also offered to provide optimum bus performance. The respective device types are DS96F172, DS96F174 and DS16F95.

Industry Part Number

NS Part Numbers

DS96F175ME/883 * DS96F175MJ/883 ** DS96F175MW/883 ***

DS96F175

Prime Die

M175

Controlling Document

9076601M2A*,MEA**,MFA***

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
MIL-STD-883, Method 5004	1 2 3	Static tests at Static tests at Static tests at	+25 +125 -55
Quality Conformance Inspection MIL-STD-883, Method 5005	3 4 5 6 7 8A 8B 9 10	Static tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at	-55 +25 +125 -55 +25 +125 -55 +25 +25 +125
	11	Switching tests at	-55

Features

- Meets EIA Standard RS-485, RS-422A, RS-423A
- Designed for multipoint bus applications
- TRI-STATE outputs
- Common mode input voltage range: -7V to +12V $% \left(1-2\right) \left(1-2$
- Operates from single +5.0V supply
- Lower power version
- Input sensitivity of ±200mV over common mode range
- Input hysteresis of 50mV typical
- High input impedance
- DS96F173 and DS96F175 are lead and function compatible with SN75173/175 or the AM26LS32/MC3486

(Absolute Maximum Ratings)

(Note	Τ)	

-65 C to +175 C
300 C
1500mW 1034mW 1500mW
7.0V
<u>+</u> 25V
<u>+</u> 25V
7.0V
50mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

actual device operation. Note 2: *Derate J Package 10mW/ C above 25C; Derate W package 6.9mW/ C above 25 C; Derate E package 11.11mW/ C above 25 C.

Recommended Operating Conditions

Supply Voltage (Vcc)				
	Min. 4.50	Тур. 5.0		Units V
Common Mode Input Voltage Vcm	Min. -7	Тур.	Max. +12	Units V
Differential Input Voltage(Vid)				
	Min. -7	Тур.	Max. +12	Units V
Output Current HIGH(Ioh)	Min.	Тур.	Max. -400	Units uA
			-400	uA
Output Current LOW(Iol)	Mix.	Тур.	Max. 16	Units mA
Operating Temperature (TA)	Min. -55	Тур. 25		Units C

Electrical Characteristics

DC PARAMETERS:

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Icc	Supply Current	Vcc = 5.5V, Venable = 0V, Vid = 2V	1			50	mA	1, 2, 3
Voh	Logical "1" Output Voltage	Vcc = 4.5V, Ioh = -400uA, Vid = .2V	2		2.5		V	1, 2, 3
Vol	Logical "0" Output Voltage	Vcc = 4.5V, Iol = 8mA, Vid =2V	2			.45	V	1, 2, 3
Vth Diff	Input Threshold Voltage	Vcc = 4.5V & 5.5V, Vcm = 0V, Vo = 2.5V, Io = -400uA	2			.20	V	1, 2, 3
		Vcc = 4.5V & 5.5V, Vcm = -12V, Vo = 2.5V, Io = -400uA	2			.20	V	1, 2, 3
		Vcc = 4.5V & 5.5V, Vcm = 12V, Vo = 2.5V, Io = -400uA	2			.20	V	1, 2, 3
Vtl Diff	Input Threshold Voltage	Vcc = 4.5V & 5.5V, Vcm = 0V, Vo = .5V, Io = 16mA	2		20		V	1, 2, 3
		Vcc = 4.5V & 5.5V, Vcm = -12V, Vo = .5V, Io = 16mA	2		20		V	1, 2, 3
		Vcc = 4.5V & 5.5V, Vcm = 12V, Vo = .5V, Io = 16mA	2		20		V	1, 2, 3
Ii	Input Line Current	Vcc = 4.5V, Vin = 12V Untested Inputs are 0V				1	mA	1, 2, 3
		Vcc = 5.5V, Vin = -7V Untested Inputs are 0V			8		mA	1, 2, 3
Iih	Logical "1" Enable Input Current	Vcc = 5.5V, Vih = 2.7V				10	uA	1, 2, 3
III	Logical "0" Enable Input Current	Vcc = 5.5V, Vil = .4V			-100		uA	1, 2, 3
Ios	Output Short Circuit Current	Vcc = 4.5V, Vo = 0V	2		-85	-15	mA	1, 2, 3
		Vcc = 5.5V, Vo = 0V	2		-85	-15	mA	1, 2, 3
Vik	Enable Input Clamp Voltage	Vcc = 4.5V, Ii = -18mA			-1.5		V	1, 2, 3
Ioz	High Impedance Output Current	Vcc = 5.5V, Venable = .8V, Vout = .4V, outputs disabled			-20	20	uA	1, 2, 3
		Vcc = 5.5V, Venable = .8V, Vout = 2.4V, outputs disabled			-20	20	uA	1, 2, 3
Vih	Logical "1" Enable Input Voltage		3		2		V	1, 2, 3

Electrical Characteristics

DC PARAMETERS: (Continued)

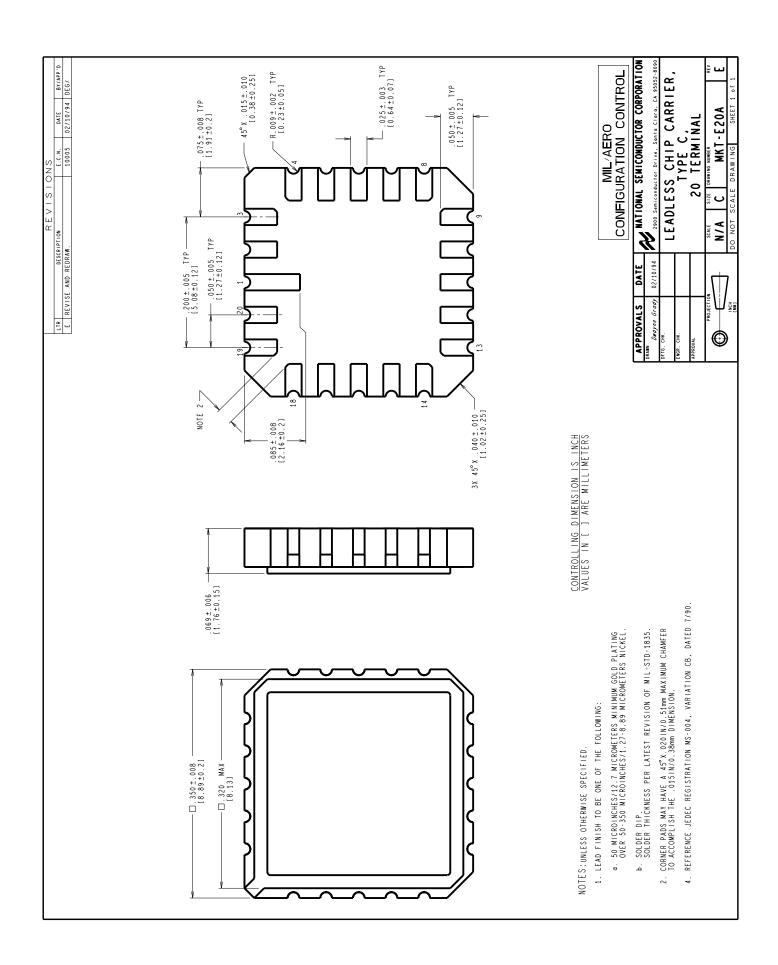
SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vil	Logical "0" Enable Input Voltage		4			. 8	V	1, 2, 3
Rin	Input Resistance				10		K Ohms	1, 2, 3

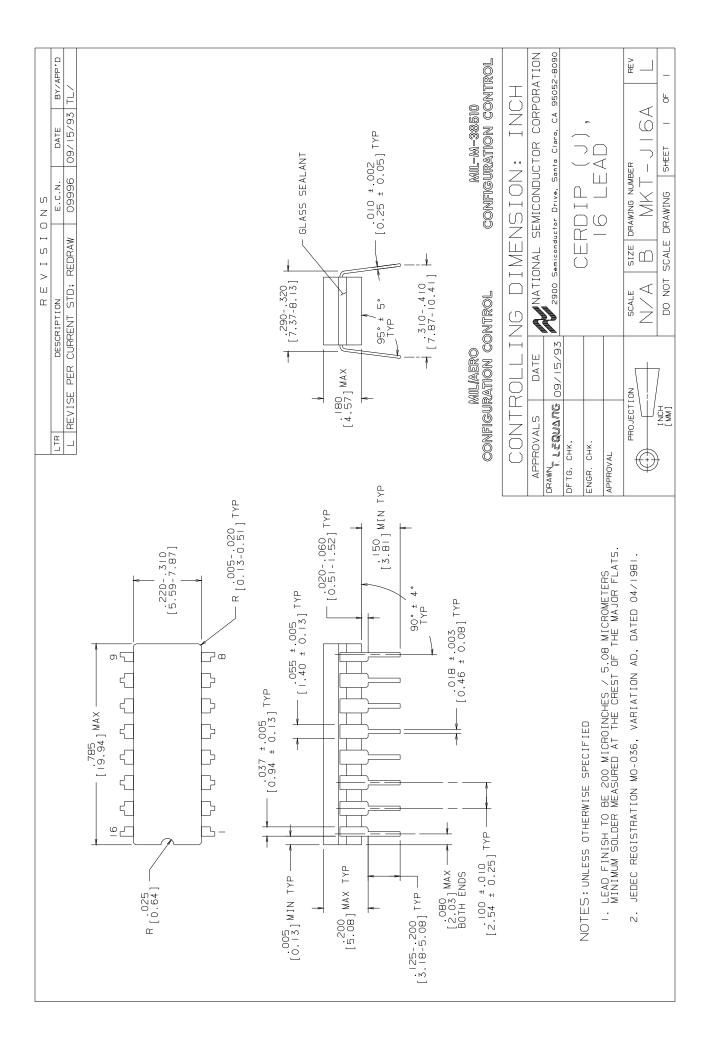
AC PARAMETERS:

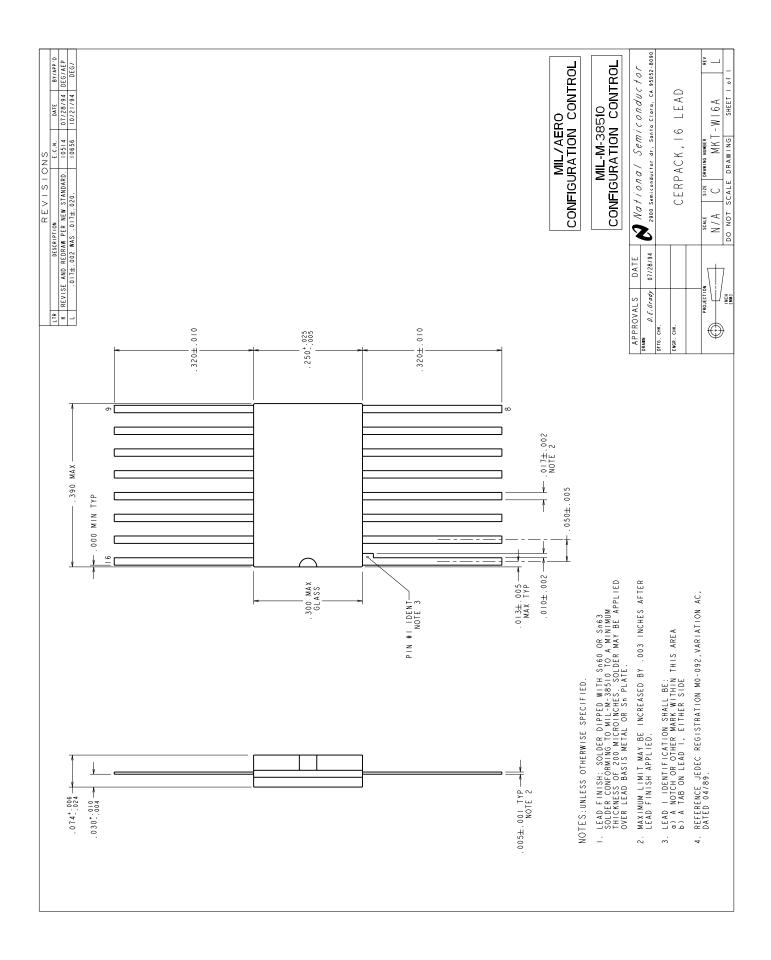
(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Vcc = 5V

tPHL	Propagation Delay	Cl = 15pF		22	nS	1
		-		30	nS	2, 3
tPLH	Propagation Delay	Cl = 15pF		22	nS	1
				30	nS	2, 3
tPZH	Propagation Delay	Cl = 15pF		16	nS	1
				27	nS	2, 3
tPZL	Propagation Delay	Cl = 15pF		18	nS	1
				27	nS	2, 3
tPHZ	Propagation Delay	Cl = 5pF		20	nS	1
				27	nS	2, 3
		Cl = 20pF	5	30	nS	1
			5	37	nS	2, 3
tPLZ	Propagation Delay	Cl = 5pF		18	nS	1
				30	nS	2, 3
tPW	Propagation Delay			3	nS	1
				8	nS	2
				5	nS	3

Note 1: Icc is tested with outputs disabled (worst case), Icc enabled is guaranteed by this test.


Note 2: Venable =2V. Voh & Vol are tested over common mode voltage range of +/-12V via the Vth/Vtl tests.


Note 3: Guaranteed by Vol & Voh tests. Note 4: Guaranteed by Ioz test. Note 5: Testing at 20pF assures conformance to spec at 5pF.


Graphics and Diagrams

GRAPHICS#	DESCRIPTION	
E20ARE	LDLESS CHIP CARRIER, TYPE C 20 TERMINAL(P/P DWG)	
J16ARL	CERDIP (J), 16 LEAD (P/P DWG)	
W16ARL	CERPAC (W), 16 LEAD (P/P DWG)	

See attached graphics following this page.

