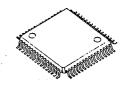


1/2, 1/3 DUTY LCD DRIVER WITH KEY SCAN

GENERAL DESCRIPTION

The NJU6435 is a 1/2 or 1/3 duty LCD driver for segment type LCD panel with key scan function.


Display data and Key input data are communicated by serial data transmission, therefore, the communication between NJU6435 and MPU is performed by only 5 lines.

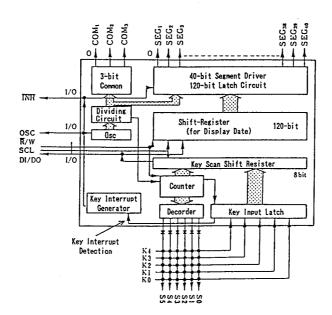
80-segment or 120-segment are displayed by 40-segment driver and 2- or 3-common driver.

The key scan function scanning up to 30 keys and the data is transferred to the MPU.

The NJU6435 can design simple front panel, therefore it is easy to apply car mounted audio, general audio and other products which have a display and key input.

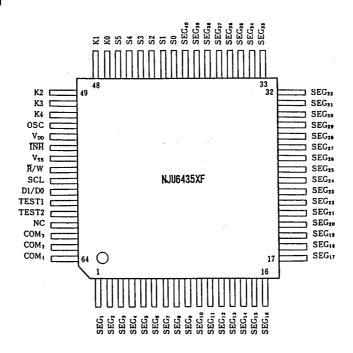
PACKAGE OUTLINE

NJU6435XF


FEATURES

- 40-Segment Drivers
- Duty Ratio and
 Bias Level
 1/2 duty, 1/2 bias 80-Segment Drive (Version D)
 1/3 duty, 1/2 bias 120-segment Drive (Version E)
 1/3 duty, 1/3 bias 120-segment Drive (Version F)
- 30 Key Scan Function (6-out x 5-in Matrix)
- Serial Data Transmission
- Display Off Function (TNH Terminal)
- Operating Voltage --- 5V±10%
- Package Outline --- QFP 64
- C-MOS Technology

LINE UP


LINE UP	DUTY RATIO	BIAS LEVEL	MAX. DISPLAY SEGMENT	COMMON
NJU6435D	1/2 Duty	1/2 Bias	80 Segment	233
NJU6435E	1/3 Duty	1/2 Bias	120 Segment	
NJU6435F	1/3 Duty	1/3 Bias	120 Segment	

■ BLOCK DIAGRAM

PIN CONFIGURATION

TERMINAL DESCRIPTION

NO.	SYMBOL	F U N C T I O N					
1~40	SEG ₁ ~ SEG ₄₀	Segment Output Terminal					
41~46	SO ~ S5	Key Scanning Signal Output Terminal					
47~51	K0 ~ K4	Key Scanning Input Terminal (Built-in Pull-down Resistance)					
52	OSC	CR Oscillating Terminal (External C, R Connecting)					
53,55	V _{DD} , Vss	Power Supply					
54	INH	Display-Off Control / Key Input Interrupt Signal Output Terminal					
56	R/W	Read / Write Control Terminal					
57	SCL	Serial Data Transmission Clock Terminal					
58	D1/D0	Serial Data Input / Output Terminal					
59,60	TEST1, TEST2	Testing Terminal (Normally OPEN)					
61	ŃC	Non Connection					
62 63 64	COM ₃ COM ₂ COM ₁	Common Output Terminal. (In the Version D, COM3 is no active (Vss))					

■ FUNCTIONAL DESCRIPTION

(1) Operation of each block

(1-1) Oscillation Circuit

Oscillation by connecting external resistor and capacitor.

This circuits supply the basical clock signal to other circuits like as common driver and segment driver and key scan circuits.

(1-2) Dividing Circuit

This circuit divide the oscillating frequency, and generate the common and segment output timing signals.

(1-3) Common Driver

Output the common driving signal for LCD.

(1-4) Segment Driver

Output the segment driving signal for LCD.

ON and OFF signal output according to the latched data.

(1-5) Shift-Register

During the \overline{R}/W signal is "H", the data input to the shift-register by synchronousing the shift clock on SCL terminal.

(1-6) Counter circuit

This circuits generate key scanning timing. When the key input, the data in the counter is transferred to the key scan shift resistor.

(1-7) Decoder

Decoding the counter output and generate the key scan signal.

(1-8) Key Input Latch

When the key depressed, the decoder output is transfer to the latch.

(1-9) Key Scan Shift Register

Output the data sent from counter circuits and key input latch to the MPU by serial format through the DI/DO port.

(2) Mode of each terminal and Initialization

(2-1) Mode of each Terminal controlled by \overline{R}/W signal

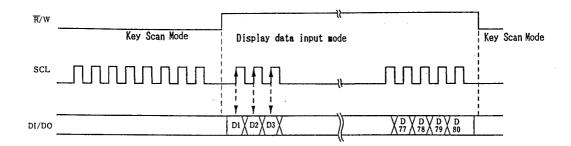
R/W	INH	DI/DO
Н	LCD Display Control Mode (Input) "H" - Display ON "L" - Display Enforced OFF Key Scan is stopped	LCD Display Data Input Mode (Input) "H" - ON "L" - OFF
L	Key Scan Mode (Output) When key input, Interrupt signal Output LCD enforced off is not effective	Key Input Signal Output Mode (Output) After key interrupt signal output, key input data output from this terminal synchronized by the clock signal.

(2-2) Initialization

The NJU6435 series doesn't have a initialization function for the display data.

Therefore, the data in the Shift Register and Latch connected to the segment driver is unfixed when the power turns on.

To avoid the no meaning display, the $\overline{R}/W = "H"$ and $\overline{INH} = "L"$ status should be kept during the display data transmission from the controller to the NJU6435.

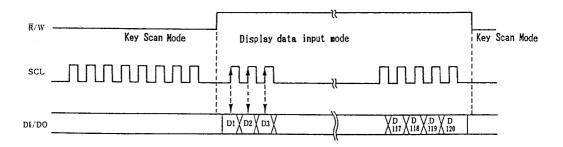


(3) Display Data Correspond to Segment Terminals

(3-1) Version D (1/2 Duty)

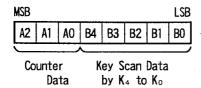
Data	Segment	COM ₁	COM ₂
D1	SEG ₁	0	
D2	SEG ₂	0	
D3	SEG₃	0	
D4	SEG₄	0	
 		t 1	1 1
D37	SEG ₃₇	0	
D38	SEG38	0	
D39	SEG39	0	
D40	SEG ₄₀	0	
D41	SEG ₁		0
D42	SEG ₂		0
D43	SEG₃		0
D44	SEG₄		0
		1	
D77	SEG ₃₇		0
D78	SEG38		0
D79	SEG39		0
D80	SEG ₄₀		0

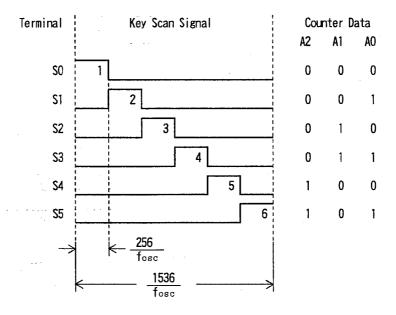
· Data Input / Output Timing



(3-2) Version E and F (1/3 Duty)

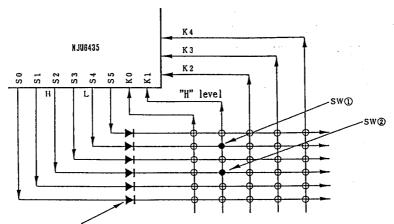
Data	Segment	COM ₁	COM ₂	СОМз
D1	SEG ₁	0		
D2	SEG ₂	0		
D3	SEG₃	0		
D4	SEG₄	0		
1 1				
D37	SEG ₃₇	0	<u> </u>	
D38	SEG ₃₈	0		
D39	SEG ₃₉	0		
D40	SEG ₄₀	0		
D41	SEG ₁		0	
D42	SEG ₂		0	
D43	SEG₃		0	
D44	SEG ₄		0	
	1		 	!
D77	ere.	<u>i</u>	<u> </u>	
	SEG ₃₇		0	
D78	SEG ₃₈		0	
D79	SEG ₃₉		0	
D80	SEG ₄₀		0	
D81	SEG ₁			0
D82	SEG ₂			0
D83	SEG ₃			0
D84	SEG₄			0
D117	SEG ₃₇			0
D118	SEG₃8			0
D119 "	SEG39			0 0
D120	SEG ₄₀		·····	0

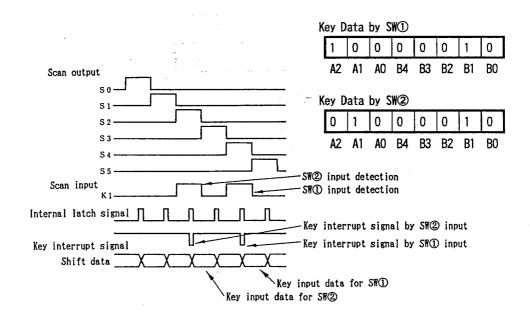

· Data Input / Output Timing



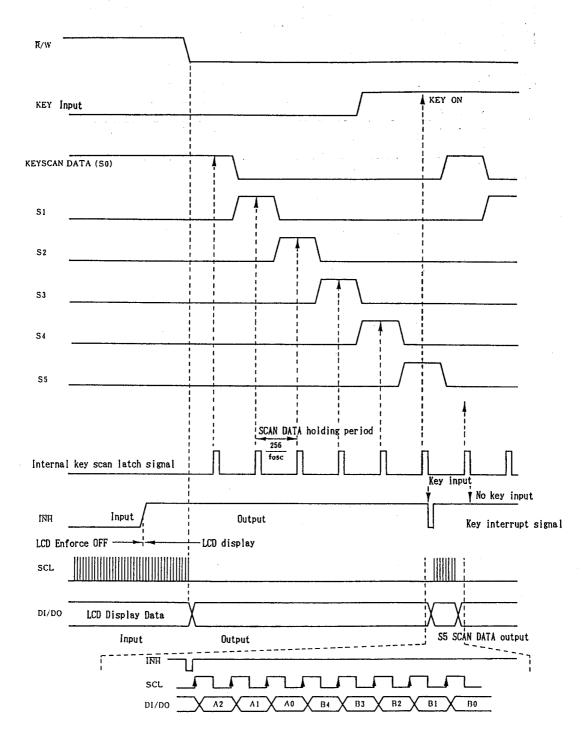
(4) Key Input Data Output Format

(4-1) Data Format


Key Scan Signal Correspond to Counter Data is as follows:


(4-2) Key Scan Output Data in Double or More Input.

In case of two or more key are depressed at same time, the output data is as follows: Below example is mentioned SW① and SW② are depressed at once.


Connect the Diode between SO-S5 and Key Matrix

In this time, two of key scan code is output as follows:

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT	
Operating Voltage (1)	VDD	- 0.3 ~ + 7.0	V	
Input Voltage	VIN	- 0.3 ~ V _{DD} +0.3	V	
Output Current (1) * 2)	0 (1)	100	μΑ	
Output Current (2) * 3)	0 (2)	1.0	mA	
Power Dissipation	Po	300	mW	
Operating Temperature	Topr	- 30 ~ + 85	°C	
Storage Temperature	Tstg	- 55 ~ + 150	°C	

- * 1) R/W, SCL, INH, So~Ss, DI/DO Terminals
- * 2) SEG₁~SEG₄₀ Terminals
- * 3) COM_1 , COM_2 , COM_3 Terminals

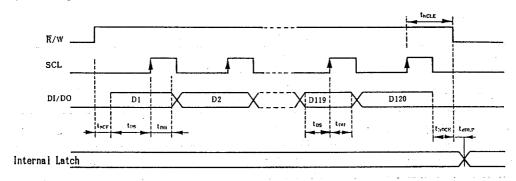
■ ELECTRICAL CHARACTERISTICS DC Characteristics

 $(Ta=-20 \rightarrow 85^{\circ}C, V_{DD}=5.0V \pm 10\%, V_{SS}=0V)$

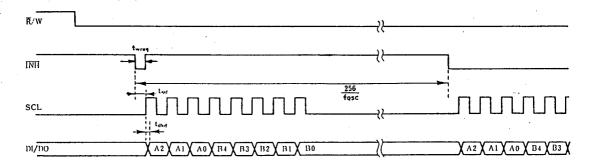
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V _{DD}		4.5	5.0	5.5	٧
Operating Current	DD	V _{DD} Terminal			2.0	mA
"H" Input Voltage (1)	V _{IH(1)}	ĪÑĦ,K₀~K₄ Terminals	0.7V _{DD}		,	٧
"H" Input Voltage (2)	V _{IH(2)}	R/W,SCL,DI/DO Terminals	0.8V _{DD}			٧
"L" Input Voltage (1)	V ₁₁₋₍₁₎	TNH,K₀~K₄ Terminals			0.3V _{DD}	٧
"L" Input Voltage (2)	V _{1L(2)}	R/W,SCL,DI/DO Terminals			0.2V _{DD}	٧
"H" Input Current	Гін	R/W,SCL,DI/DO, INH,Ko∼K4 Terminals			5	μА
"L" Input Current	l _{IL}	R/W,SCL,DI/DO, INH,Ko∼K4 Terminals		* . * .	5	μΑ
"H" Output Voltage (1)	V _{OH(1)}	lo=-40μA INH,DI/DO,So~S ₅ Terminals	4.2			٧
"H" Output Voltage (2)	V _{OH (2)}	lo=-10μA SEG ₁ ~SEG ₄₀ Terminals	4.0			٧
"H" Output Voltage (3)	V он (з)	lo=-100μA COM1∼COM3 Terminals	4.4			٧
"L" Output Voltage (1)	V _{OL(1)}	I _o =400 μA INH,DI/DO,S _o ~S ₅ Terminals			0.4	٧
"L" Output Voltage (2)	Aor (5)	l _o =10μA SEG ₁ ~SEG ₄₀ Terminals			1.0	٧
"L" Output Voltage (3)	Vor (3)	l₀=100μA COM₁∼COM₃ Terminals			0.6	٧
COM 1/2 Level Voltage	V _{MC1/2}	lo=±100μA COM ₁ ,COM ₂ Terminals 1)	1.9	2.5	3.1	٧
COM 1/3 Level Voltage	V _{MC1/3}	l₀=±100μA COM₁∼COM₃ Terminals 2)	1.06	1.66	2.26	٧
COM 2/3 Level Voltage	V _{MC2/3}	I₀=±100μA COM₁∼COM₃ Terminals 2)	2.73	3.33	3.93	٧
SEG 1/3 Level Voltage	V _{MS1/3}	l _o =±10μA SEG ₁ ~SEG ₄₀ Terminals 2)	0.66	1.66	2.66	٧
SEG 2/3 Level Voltage	V _{MS2/3}	I _o =±10μA SEG ₁ ~SEG ₄₀ Terminals 2)	2.33	3.33	4.33	٧
External Resistance	R	OSC Terminal		51		kΩ
External Capacitance	С	OCS Terminal		680		рF
Oscillator Frequency	fosc	R=51kΩ,C=680pF	40	50	60	kHz

Note 1) Version D and E

2) Version F

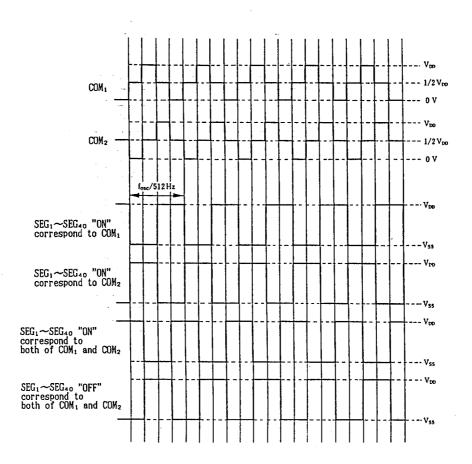


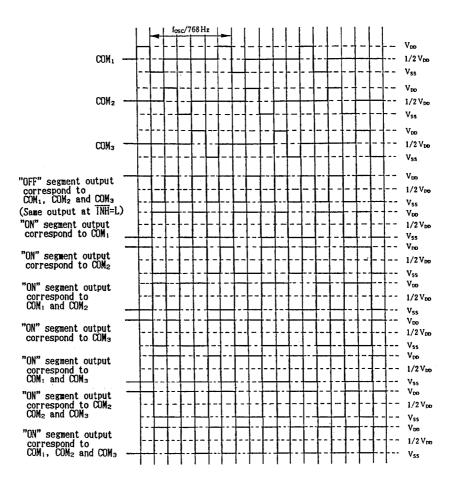
AC Characteristics


 $(Ta=-20 \longrightarrow 85^{\circ}C, V_{DD}=5.0V \pm 10\%, V_{SS}=0V)$

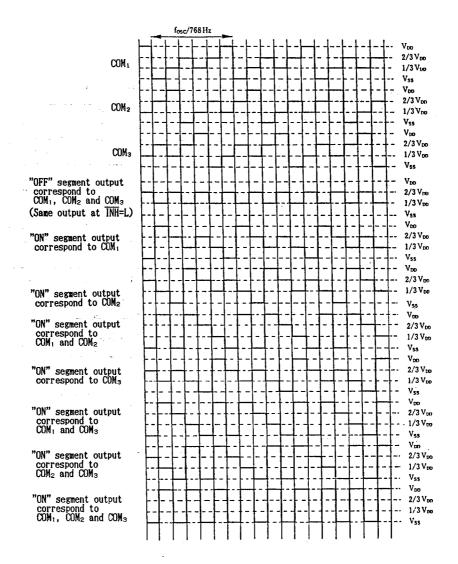
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
"L" Clock Pulse Width	twcll	SCL Terminal	0.50			μs
"H" Clock Pulse Width	tw clh	SCL Terminal	0.50			μs
Data Set-up Time	tos	SCL,DI/DO Terminals	0.50			μs
Data Hold Time	toH	SCL,DI/DO Terminals	0.50			μs
CE Set-up Time	tsce	R/W,DI/DO Terminals	1.0			μs
CE Hold Time (1)	thoce	R/W,DI/DO Terminals	1.0			μs
CE Hold Time (2)	there	R/W,SCL Terminals	1.50	1		μs
Data Latch Delay Time	tdoip				1.0	μs
"L" Clock Enable Pulse Width	twcel	R/W Terminal	4.0			μs
Request Pulse Width	twreq	INH Terminal		1/fosc		μs
Data Shift Set-up Time	tssf	TNH,SCL Terminals	0.5		:	μs
Data Output Delay Time	tdkd	SCL,DI/DO Terminals	0.1			μs

· Input Timing Characteristics

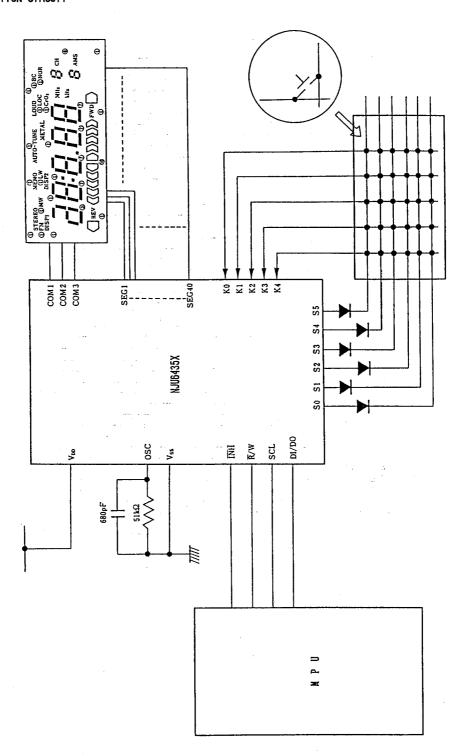

· Output Timing Characteristics


(5) LCD Driving Waveform

(5-1) Version D (1/2Bias, 1/2Duty)



(5-2) Version E (1/2Bias, 1/3Duty)



(5-3) Version F (1/3Bias, 1/3Duty)

M APPLICATION CIRCUIT

NJU6435 Series

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.