

VCSO BASED CLOCK GENERATOR

GENERAL DESCRIPTION

The M901-01 is a PLL (Phase Locked Loop) based

clock generator that uses an internal VCSO (Voltage Controlled SAW Oscillator) to produce a very low jitter output clock. The output clock (e.g., frequencies of 622.08, 311.04, 155.52, or 77.76MHz with the M901-01-622.0800) is provided from a

LVPECL clock output pair. Output frequency accuracy is assured by phase-locking the VCSO to an external input reference frequency (e.g., frequencies of 19.44, 38.80, 77.76, or 155.52MHz with the M901-01-622.0800). The input reference can either be an external crystal, utilizing the internal crystal oscillator, or a stable external clock source such as a packaged crystal oscillator.

FEATURES

- Output clock frequency from 62MHz to 700MHz (Consult factory for VCSO frequency availability)
- ◆ Low jitter 0.5ps rms, typ. (12kHz-20MHz @622.08MHz)
- Ideal for OC-48 (STM-16), Gigabit Ethernet clock ref
- ♦ Integrated SAW (surface acoustic wave) delay line
- XTAL or LVCMOS reference input
- ♦ LVPECL output
- ♦ Single 3.3V power supply
- Small 9 x 9 mm SMT (surface mount) package

PIN ASSIGNMENT (9 x 9 mm SMT)

Figure 1: Pin Assignment

Example Output Frequency Configurations *

Ref Clock Freq (MHz)	VCSO Freq ¹ (MHz)	Output Freq (MHz)	Application
19.44	622.08	622.08	OC-12/48
		155.52	(STM-4/16)
25.00	625.00	156.25	10GbE

Table 1: Example Output Frequency Configurations *

Note1: Specify VCSO center frequency at time of order

Note *: Other frequencies available. See "Ordering Information" on pg. 8.

Revised 30Jul2004

Integrated Circuit Systems, Inc. • Networking & Communications • www.icst.com • tel (508) 852-5400

BLOCK DIAGRAM

PIN DESCRIPTIONS

Number	Name	I/O	Configuration	Description
1, 2, 3, 10, 14, 26	GND	Ground		Power supply ground connections.
4 9	OP_IN nOP_IN	Input		
5 8	nOP_OUT OP_OUT	Output		External loop filter connections. See Figure 4, External Loop Filter, on pg. 4.
6 7	nVC VC	Input		
11, 22, 25, 33	VCC	Power		Power supply connection, connect to +3.3V.
12 13	P0 P1	Input	Internal pull-down resistor ¹	P divider (output divider) inputs P1:0. LVCMOS/LVTTL. See 4, Pin Selection of P Divider Using P1:0 Pins, on pg. 2.
15 16	FOUT nFOUT	Output	No internal terminator	Clock output pair. Differential LVPECL.
17	OUT_EN	Input	Internal pull-down resistor ¹	Output Enable: Logic 1 resets M and P dividers and forces FOUT to LOW and nFOUT to HIGH. Logic 0 enables the outputs. LVCMOS/LVTTL.
18, 20, 21, 23	NC			No connection.
24	XTAL_1 / REF_IN	Input		External crystal connection. Also accepts LVCMOS/LVTTL compatible clock source.
27	XTAL_2	Input		External crystal connection. Leave unconnected when driving pin 27 with external clock reference.
28	MO			
29	M2		Internal null-down resistor ¹	M divider (feedback divider) inputs M5:2 and M0
30 31	M3 M4	Input		See Table 3, Example Pin Selection of M Divider Using M5:2, M0 Pins, on pg. 2.
32	M5	-	Internal pull-up resistor ¹	-
19, 34, 35, 36	DNC			Do Not Connect.
				Table 2: Pin Descriptions

Note1: For typical values of internal pull-down and pull-up resistors, see DC Characteristics on pg. 6.

DEVICE CONFIGURATION TABLES Example Pin Selection of M Divider Using M5:2, M0 Pins

M5:0 Pin Settings	Definition	Input Clo (MHz) for _ VCSO	ock Freq Common Fr <u>e</u> qs
(PIIIS 32-28) M5 -M2, M0		F _{VCSO} = 622.08 ¹	F _{vcso} = 625.00 ²
<u>5³ 4 3 2 1⁴ 0</u>	Feedback Divider Value "M"		
0 0 0 1 0 0	M = 4	155.52	156.25
0 0 1 0 0 0	M = 8	77.76	
0 1 0 0 0	M = 16	38.80	
0 1 1 0 0 1	M = 25		25.00
1 0 0 0 0 0	M = 32	19.44	
1 1 1 1 0 1	M = 61		

 LES
 Note1:
 $F_{VCSO} = 622.08$ MHz (e.g., M901-01-622.0800)
 Note2:
 $F_{VCSO} = 625.00$ MHz (e.g., M901-01-625.0000)
 Note3:
 M5 pin has pull-up resister; M4-M2 and M0 have pull-down.
 Note4:
 M1 bit is always 0 (no M1 pin exists).
 M1 bit is always 0 (no M1 pin exists).
 M2
 M3
 M3</th

Pin Selection of P Divider Using P1:0 Pins

P1:0 Se (Pin 13 a P1	P1:0 Settings (Pin 13 and 12) P1 P0		Output Frequency (MHz) Example when F _{VCSO} = 622.08 ¹
0	0	1	622.08
0	1	2	311.04
1	0	4	155.52
1	1	8	77.76

Table 4: Pin Selection of P Divider Using P1:0 PinsNote1: $F_{VCSO} = 622.08MHz$ (e.g., M901-01-622.0800)

 Table 3: Example Pin Selection of M Divider Using M5:2, M0 Pins

M901-01 Datasheet Rev 4.0

2 of 8

Revised 30Jul2004

FUNCTIONAL DESCRIPTION

The M901-01 is a PLL (Phase Locked Loop) based clock generator that generates output clocks synchronized to an input reference clock. The M901-01 combines the flexibility of a VCSO (Voltage Controlled SAW Oscillator) with the stability of a crystal oscillator.

The M901-01 uses a high-Q, narrow tuning range VCSO with a center frequency that is specified at time of device order (see Ordering Information on pg. 8). A suitable reference clock frequency, M Divider setting, and loop filter configuration must be used to assure proper operation.

Input Reference

An input clock reference is required. It should be a stable external clock source, such as a packaged crystal oscillator or distributed system clock. The clock reference is applied to the REF_IN input pin, which is internally applied to the non-inverting input of the phase detector.

See External Crystal Specifications in Application Information on pg. 4.

Internal PLL Operation

The internal PLL is comprised of a first order, type 3 frequency/phase detector, a SAW delay-line based VCO (VCSO), and a clock feedback divider.

The clock feedback divider (M Divider) divides the VCSO frequency and drives the inverting input of the phase detector, which is compared to the input reference clock. The PLL is "locked" when the phase detector inputs are aligned in frequency and phase; the phase detector output controls the VCSO frequency to achieve this, and the external loop filter provides stability to this frequency (and phase) control system. Hence, the VCSO frequency operates at "M" times the input reference frequency, thus accomplishing frequency translation. The external loop filter also acts as a low pass filter that provides attenuation of clock jitter on the reference input.

The relationship between the VCSO output frequency, the M divider, and the input reference frequency is defined as follows:

 $Fvcso = Fref_in \times M$

The product of M and the input frequency must be such that it falls within the "lock" range of the VCSO.

See APR in AC Characteristics on pg. 6.

P Divider and Outputs

The M901-01 provides one differential LVPECL output pair: FOUT, nFOUT. By using the P divider, the output frequency can be the VCSO center frequency (Fvcso) or 1/2, 1/4, or 1/8 Fvcso.

The P1 and P0 pins select the value for the P divider.

See Table 4, Pin Selection of P Divider Using P1:0 Pins, on pg. 2.

When the P divider is included, the complete relationship for the output frequency is defined as:

$$Fvcso = Fref_in \times \frac{M}{P}$$

Configuration of M and P Dividers

The M and P dividers can be set by pin configuration using the input pins M0, M2 - M5, P0, and P1. The data on pins M5:2 and M0 and on pins P1:0 is passed directly to the M and P dividers.

The divider configuration of the M901-01 is reset and the outputs disabled when the input pin OUT_EN is set HIGH. MR is set LOW for divider configuration to be operational.

M901-01 Datasheet Rev 4.0

VCSO BASED CLOCK GENERATOR

Product Data Sheet

M901-01

APPLICATION INFORMATION

This section includes information on the optional external crystal and on the external loop filter.

The subsections on the loop filter provide example component values and also briefly describe the SAW PLL simulator tool and additional application information available at www.icst.com.

External Crystal Specifications

If an external crystal is used with the on-chip crystal oscillator circuit (XTAL OSC), the external crystal should have the following general specifications:

Crystal Specifications

	Parameter	Min	Тур	Max	Unit		
	Crystal Type	AT-o	AT-cut quartz				
	Mode of Oscillation	ental					
f ₀	Frequency Range	16		40	MHz		
ESR	Equivalent Series Resistance				Ω		
	Spurious Response (non-harmonic)				dBc		
CL	Load Capacitance, parallel load resonant	16		32	pF		
P ₀	Drive Level	0.1		1.0	mW		

Table 5: Crystal Specifications

The external crystal will be applied to the XTAL_1 / REF_IN and XTAL_2 input pins. External crystal load capacitors are also required.

Recommended External Crystal Configuration M901-01

Figure 3: Recommended External Crystal Configuration

XTAL Load Capacitance Specification = 18 pF C1 = 27 pF

C2 = 33 pF

External load capacitors C1 and C2 present a load of 15 pf to the crystal (they are seen in series by the crystal through the common ground connection). With the additional of PCB trace capacitance and M901-01 input capacitance, the total load to the crystal is about 18 pf.

External Loop Filter

To provide stable PLL operation, and thereby a low jitter output clock, the M901-01 requires the use of an external loop filter. This is provided via the provided filter pins (see Figure 4). Due to the differential signal path design, the implementation requires two identical complementary RC filters as shown here.

Example External Loop Filter Component Values

PLL Bandwidth	Damping Factor	R loop	C loop	R post	C post
400Hz	2.0	1.5k Ω	4.70μF	50k Ω	3300pF
1.2kHz	2.9	$4.7 \mathrm{k}\Omega$	1.00µF	50k Ω	1500pF
2.5kHz	6.2	10.0k Ω	1.00µF	50k Ω	470pF
9.9kHz	3.6	39.0k Ω	0.022µF	20k Ω	470pF
	Table 6: Exan	nple Externa	Loop Filte	r Compone	ent Values

PLL Simulator Tool Available

A free PC software utility is available on the ICS web site. The SAW PLL Simulator is a downloadable application that simulates PLL jitter and wander transfer characteristics. This enables the user to set appropriate external loop component values in a given application.

Refer to the SAW PLL Simulator Software web page at www.icst.com/products/calculators/m2000filterSWdesc.htm for additional information.

SAW PLL Application Notes Available

The ICS web site (www.icst.com) also has application notes on:

- PCB layout guidelines (including special detailed instructions for preventing issues such as external reference crosstalk)
- Any new special device application details that may become available
- Instructions for using PLL simulator software
- Guidelines for PCB fabrication (including recommended PCB footprint, solder mask, and furnace profile)

Refer to the SAW PLL Application Notes web page at www.icst.com/products/appnotes/SawPllAppNotes.htm for application notes and any additional product information that may become available.

4 of 8

ABSOLUTE MAXIMUM RATINGS¹

Symbol	Parameter	Rating	Unit
V	Inputs	-0.5 to V _{CC} +0.5	V
Vo	Outputs	-0.5 to V _{CC} +0.5	V
V _{CC}	Power Supply Voltage	4.6	V
Ts	Storage Temperature	-45 to +100	°C
		Table 7 About the March	Detions

Table 7: Absolute Maximum Ratings

Note1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in Recommended Conditions of Operation, DC Characteristics, or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

RECOMMENDED CONDITIONS OF OPERATION

Symbol	Parameter		Min	Тур	Max	Unit
V _{cc}	Positive Supply Voltage	le	3.135	3.3	3.465	۷
T,	Ambient Operating Te	mperature				
~		Commercial	0		+70	°C
	-	Industrial	-40		+85	Oo

Table 8: Recommended Conditions of Operation

ELECTRICAL SPECIFICATIONS

DC Characteristics

Unless stated otherwise, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to +70 °C (commercial), $T_A = -40$ °C to +85 °C (industrial), $F_{VCSO} = 622-675$ MHz,¹ LVPECL outputs terminated with 50 Ω to V_{CC} - 2V

		88						
;	Symbol	Parameter		Min	Тур	Max	Unit	Conditions
Power Supply	V _{cc}	Positive Supply Voltage		3.135	3.3	3.465	V	
	I _{cc}	Power Supply Current			200		mA	
LVCMOS /	V _{IH}	Input High Voltage	REF_IN, OUT_EN, P0, P1,	2		V _{cc} + 0.3	V	
	V_{IL}	Input Low Voltage	M0, M2, M3, M4, M5	-0.3		0.8	V	
Inputs with	I _{IH}	Input High Current				150	μA	$V_{CC} = V_{IN} =$
Pull-down	I	Input Low Current	REF_IN, OUT_EN, P0:P1, M0, M2, M3, M4	-5			μA	- 3.456V
	R _{pulldown}	Internal Pull-down Resistor			51		kΩ	
Inputs with	I _{IH}	Input High Current				5	μΑ	$V_{\rm CC} = 3.456V$
Pull-up	I _{IL}	Input Low Current	M5	-150			μA	$V_{\rm IN} = 0$ V
	R _{pullup}	Internal Pull-up Resistor			51		kΩ	
All Inputs	CIN	Input Capacitance	All Inputs			4	pF	
Differential	V _{OH}	Output High Voltage		V _{cc} - 1.4		V _{cc} - 1.0	V	
Output	V _{OL}	Output Low Voltage	FOUT, nFOUT	V _{cc} - 2.0		V _{cc} - 1.7	V	
	V _{P-P}	Peak to Peak Output Voltage	je ²	0.4		0.85	V	

Note1: For other VCSO center frequencies, contact ICS Note2: Single-ended measurement.

Table 9: DC Characteristics

AC Characteristics

Unless stated otherwise, $V_{CC} = 3.3V \pm 5\%$, $T_A = 0$ °C to +70 °C (commercial), $T_A = -40$ °C to +85 °C (industrial), $F_{VCSO} = 622-675$ MHz, ¹ LVPECL outputs terminated with 50 Ω to $V_{CC} - 2V$

S	ymbol	Parameter		Min	Тур	Max	Unit	Test Conditions
	F _{OUT}	Output Frequency Range	е	62		700	MHz	
	F_{REF_IN}	Input Frequency				50	MHz	
	APR	VCSO Pull-Range		±100	±150		ppm	
	Φn	Single Side Band	1kHz Offset		-87		dBc/Hz	
		Phase Noise	10kHz Offset		-100		dBc/Hz	
		@622.08MHz	100kHz Offset		-123		dBc/Hz	
	J(t)	Jitter (rms)			0.5	1.0	ps	12kHz to 20MHz
	t _{DC}	Output Duty Cycle, High	Time	40	50	60	%	
	t _R	Output Rise Time	FOUT, nFOUT	200	400	550	ps	20% to 80%
	t _F	Output Fall Time	FOUT, nFOUT	200	400	550	ps	20% to 80%
							Table	10: AC Characteristics

Note1: For other VCSO center frequencies, contact ICS

DEVICE PACKAGE - 9 x 9mm CERAMIC LEADLESS CHIP CARRIER Mechanical Dimensions:

Refer to the SAW PLL application notes web page at www.icst.com/products/appnotes/SawPllAppNotes.htm for application notes, including recommended PCB footprint, solder mask, and furnace profile.

NDTES:

- 1. DIMENSIONS ARE IN INCHES, DIMENSIONS
- IN [] ARE MM. 2. UNLESS DTHERWISE SPECIFIED ALL DIMENSIONS ARE ±.005 [.13]

Figure 5: Device Package - 9 x 9mm Ceramic Leadless Chip Carrier

ORDERING INFORMATION

Part Numbering Scheme

Figure 6: Part Numbering Scheme

Standard VCSO Output Frequencies (MHz)*

622.0800	669.3120				
625.0000	669.3266				
627.3296	669.6429				
644.5313	670.8386				
666.5143	672.1600				
669.1281	690.5692				
Table 11, Standard VCSO Output Erequencies					

Table 11: Standard VCSO Output Frequencies

Note *: Fout can equal Fvcso divided by: 1 or 4

Consult ICS for the availability of other PLL frequencies.

PLL Frequency (MHz)	Temperature	Order Part Number
622.08	commercial	M901-01- 622.0800
022.00	industrial	M901-01I 622.0800
625.00	commercial	M901-01- 625.0000
625.00	industrial	M901-01I 625.0000
669 3266	commercial	M901-01- 669.3266
003.0200	industrial	M901-01I 669.3266
669.6429	commercial	M901-01- 669.6429
	industrial	M901-01I 669.6429

Table 12: Example Part Numbers

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.

M901-01 Datasheet Rev 4.0