TOSHIBA 2SJ509

TOSHIBA FIELD EFFECT TRANSISTOR SILICON P CHANNEL MOS TYPE (L2-\pi-MOS V)

# 2 S J 5 0 9

HIGH SPEED, HIGH CURRENT SWITCHING APPLICATIONS CHOPPER REGULATOR, DC-DC CONVERTER AND MOTOR DRIVE APPLICATIONS

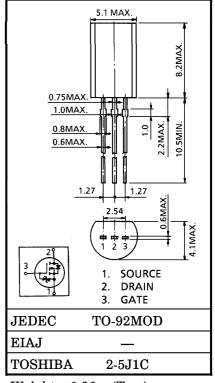
#### • 4 V Gate Drive

• Low Drain-Source ON Resistance :  $R_{DS(ON)} = 1.35 \Omega$  (Typ.)

• High Forward Transfer Admittance:  $|Y_{fS}| = 0.7 \text{ S}$  (Typ.)

• Low Leakage Current

: 
$$I_{DSS} = -100 \,\mu A \,(V_{DS} = -100 \,V)$$


• Enhancement-Mode

: 
$$V_{th} = -0.8 \sim -2.0 \text{ V} \text{ (V}_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA)}$$

### MAXIMUM RATINGS (Ta = 25°C)

| CHARACTERIS                         | SYMBOL                      | YMBOL RATING      |                      |   |
|-------------------------------------|-----------------------------|-------------------|----------------------|---|
| Drain-Source Voltage                | $v_{ m DSS}$                | -100              | V                    |   |
| Drain-Gate Voltage (RGS             | $v_{ m DGR}$                | -100              | V                    |   |
| Gate-Source Voltage                 | $v_{GSS}$                   | ±20               | V                    |   |
| Drain Current                       | DC                          | $I_{\mathbf{D}}$  | -1                   | A |
|                                     | Pulse                       | $I_{\mathrm{DP}}$ | -3                   | A |
| Drain Power Dissipation (Ta = 25°C) | PD                          | 0.9               | w                    |   |
| Single Pulse Avalanche              | EAS                         | 136.5             | mJ                   |   |
| Avalanche Current                   | $I_{AR}$                    | -1                | A                    |   |
| Repetitive Avalanche En             | $\mathrm{E}_{\mathrm{AR}}$  | 0.09              | mJ                   |   |
| Channel Temperature                 | $\mathrm{T_{ch}}$           | 150               | °C                   |   |
| Storage Temperature Ra              | $\mathrm{T}_{\mathrm{stg}}$ | -55~150           | $^{\circ}\mathrm{C}$ |   |

# INDUSTRIAL APPLICATIONS Unit in mm



Weight: 0.36 g (Typ.)

### THERMAL CHARACTERISTICS

| CHARACTERISTIC                         | SYMBOL                 | MAX. | UNIT |
|----------------------------------------|------------------------|------|------|
| Thermal Resistance, Channel to Ambient | R <sub>th (ch-a)</sub> | 138  | °C/W |

### Note:

- \* Repetitive rating; Pulse Width Limited by Max. junction temperature.
- \*\*  $V_{DD} = -50 \text{ V}, T_{ch} = 25^{\circ}\text{C}$  (initial),  $L = 168 \text{ mH}, R_{G} = 25 \Omega, I_{AR} = -1 \text{ A}$

This transistor is an electrostatic sensitive device. Please handle with caution.

961001EAA1

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

  The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

# ELECTRICAL CHARACTERISTICS (Ta = 25°C)

|                                                 |               | · · · · · · · · ·         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |              |            |         |
|-------------------------------------------------|---------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------------|---------|
| CHARA                                           | CTERISTIC     | SYMBOL                    | TEST CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MIN. | TYP.         | MAX.       | UNIT    |
| Gate Leakag                                     | e Current     | IGSS                      | $V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _    | _            | ±10        | $\mu$ A |
| Drain Cut-of                                    | f Current     | $I_{ m DSS}$              | $V_{DS} = -100 \text{ V}, V_{GS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _    | _            | -100       | $\mu$ A |
| Drain-Source<br>Voltage                         | Breakdown     | V (BR) DSS                | $I_{ m D} = -10  { m mA}, \; { m V}_{ m GS} = 0  { m V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -100 | _            | _          | V       |
| Gate Thresho                                    | old Voltage   | $V_{ m th}$               | $V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.8 | _            | -2.0       | V       |
| Drain-Source                                    | ON Resistance | R <sub>DS</sub> (ON)      | $V_{GS} = -4 \text{ V}, I_{D} = -0.5 \text{ A}$<br>$V_{GS} = -10 \text{ V}, I_{D} = -0.5 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    | 1.68<br>1.34 | 2.5<br>1.9 | Ω       |
| Forward Tra<br>Admittance                       | nsfer         | Y <sub>fs</sub>           | $V_{DS} = -10 \text{ V}, I_{D} = -0.5 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3  | 0.7          | _          | S       |
| Input Capacitance                               |               | $C_{iss}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _    | 135          | _          |         |
| Reverse Transfer<br>Capacitance                 |               | $C_{rss}$                 | $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$<br>f = 1  MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _    | 22           | _          | рF      |
| Output Capacitance                              |               | Coss                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _    | 48           | _          | 1       |
| Switching<br>Time                               | Rise Time     | tr                        | $V_{GS}$ $V_{OUT}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _    | 20           | _          |         |
|                                                 | Turn-on Time  | t <sub>on</sub>           | $\begin{array}{c c} -10 & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} R_L = \\ 100 & \Omega \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    | 32           | _          | ns      |
|                                                 | Fall Time     | tf                        | $\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ | _    | 25           | _          | lis     |
|                                                 | Turn-off Time | t <sub>off</sub>          | $V_{\mathrm{IN}}: \mathrm{t_r}, \ \mathrm{t_f} < 5 \ \mathrm{ns}, \ \mathrm{Duty} \leq 1\%, \ \mathrm{t_W} = 10 \ \mu \mathrm{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _    | 130          | _          |         |
| Total Gate Charge (Gate-Source Plus Gate-Drain) |               | $\mathbf{Q}_{\mathrm{g}}$ | $V_{DD} = -80 \mathrm{V},  V_{GS} = -10 \mathrm{V},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 6.3          | _          |         |
| Gate-Source Charge                              |               | $Q_{ m gs}$               | $I_{\mathrm{D}} = -1\mathrm{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _    | 4.1          | _          | nC      |
| Gate-Drain ("Miller") Charge                    |               | $Q_{ m gd}$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _    | 2.2          | _          |         |

## SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25°C)

| CHARACTERISTIC                      | SYMBOL                     | TEST CONDITION                   | MIN. | TYP. | MAX. | UNIT |
|-------------------------------------|----------------------------|----------------------------------|------|------|------|------|
| Continuous Drain Reverse<br>Current | $I_{ m DR}$                | _                                | _    | _    | -1   | A    |
| Pulse Drain Reverse Current         | $I_{ m DRP}$               | _                                | _    |      | -3   | A    |
| Diode Forward Voltage               | ${ m v_{DSF}}$             | $I_{DR} = -1 A$ , $V_{GS} = 0 V$ | -    | _    | 1.5  | V    |
| Reverse Recovery Time               | $t_{rr}$                   | $I_{DR} = -1 A$ , $V_{GS} = 0 V$ |      | 90   | _    | ns   |
| Reverse Recovery Charge             | $\mathrm{Q}_{\mathrm{rr}}$ | $dI_{DR}/dt = 50  A/\mu s$       | _    | 180  |      | nC   |

## MARKING

