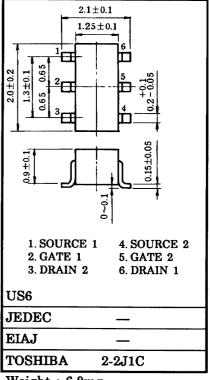
Preliminary

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type

HN1K05FU

For Portable Devices
High Speed Switching Applications
Interface Applications


- High input impedance and extremely low drive current.
- V_{th} is low and it is possible to drive directly at low-voltage CMOS. $V_{th} = 0.5$ to 1.0~V
- Suitable for high-density mounting because of a compact package.

Maximum Ratings (Ta = 25°C) (Q1, Q2 common)

Characteristics	Symbol	Rating	Unit	
Drain-source voltage	V _{DS}	20	V	
Gate-source voltage	V _{GSS}	10	V	
DC drain current	I _D	100	mA	
Drain power dissipation	P _D (Note)	200	mW	
Channel temperature	T _{ch}	150	°C	
Storage temperature range	T _{stg}	-55 to 150	°C	

Note: TOTAL rating

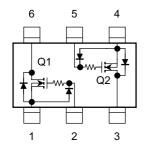
Unit in mm

Weight: 6.8mg

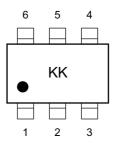
961001EAA1

ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

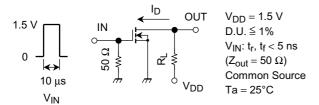

• The information contained herein is subject to change without notice.

[•] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

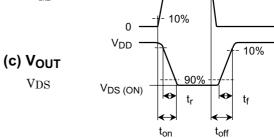

Electrical Characteristics (Ta = 25°C) (Q1, Q2 common)

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit	
Gate leakage current	I _{GSS}	V _{GS} = 10 V, V _{DS} = 0 V	_	_	1	μΑ	
Drain-source breakdown voltage	V (BR) DSS	$I_D = 100 \mu\text{A}, V_{GS} = 0 \text{V}$	20	_	_	V	
Drain cut-off current	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V	_	_	1	μΑ	
Gate threshold voltage	V _{th}	$V_{DS} = 1.5 \text{ V}, I_D = 0.1 \text{ mA}$	0.5	_	1	V	
Forward transfer admittance	Y _{fs}	$V_{DS} = 1.5 \text{ V}, I_D = 10 \text{ mA}$	35	70	_	mS	
Drain-Source ON resistance 1	R _{DS} (ON) 1	$I_D = 1 \text{ mA}, V_{GS} = 1.2 \text{ V}$	_	15	50	Ω	
Drain-Source ON resistance 2	R _{DS} (ON) 2	$I_D = 10 \text{ mA}, V_{GS} = 1.5 \text{ V}$	_	10	40	Ω	
Drain-Source ON resistance 3	R _{DS} (ON) 3	$I_D = 10 \text{ mA}, V_{GS} = 2.5 \text{ V}$	_	7	28	Ω	
Input capacitance	C _{iss}	$V_{DS} = 1.5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	12	_	pF	
Reverse transfer capacitance	C _{rss}	$V_{DS} = 1.5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	3.4	_	pF	
Output capacitance	Coss	$V_{DS} = 1.5 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	12	_	pF	
Switching time	t _{on}	V _{DD} = 1.5 V, I _D = 10 mA, V _{GS} = 0 to 1.5 V	_	0.35	_	μs	
	t _{off}	$V_{DD} = 1.5 \text{ V}, I_{D} = 10 \text{ mA}, V_{GS} = 0 \text{ to } 1.5 \text{ V}$	_	0.2	_		

Equivalent Circuit (top view)

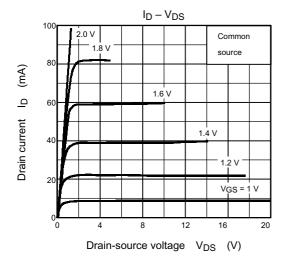

Marking

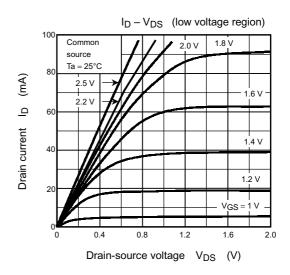
(Q1, Q2 common)

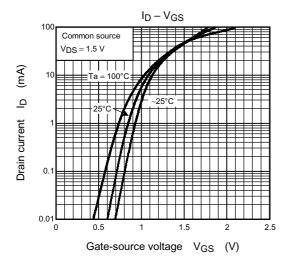

Switching Time Test Circuit

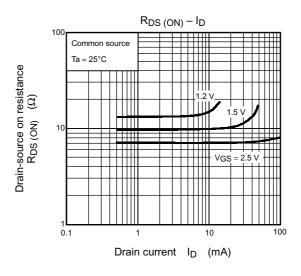
(a) Test circuit

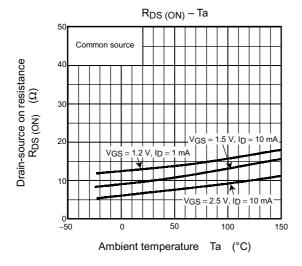
(b) V_{IN}

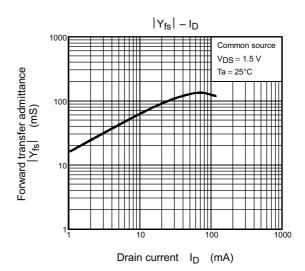

 V_{GS}

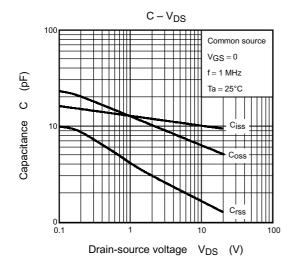


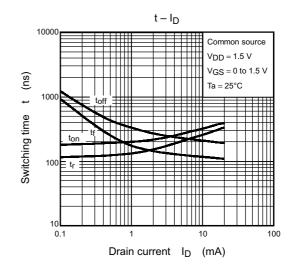

1.5 V

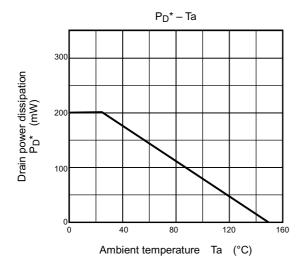

90%


(Q1, Q2 common)









(Q1, Q2 common)

*: TOTAL rating