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1 Abstract

The Fast Fourier Transformation (FFT) is an algorithm frequently used in various
applications, like telecommunication, signal and image processing. It transforms the time
domain into the frequency domain where the spectrum of amplitude and frequency can be
analyzed.

This application note describes an implementation of a real-valued 1024 point decimation
in time radix-2 FFT for the C166 microcontroller family. Assuming that the code is started
out of the internal ROM via a 16-bit demultiplexed bus, an execution time of 10 ms has
been achieved for a C165 running at 25 MHz internal clock. The code comprises 828
bytes.

This application note is based on an application note performed by pls (Programmierbare
Logik Systeme, Hoyerswerda, Germany).

2 FFT - Derivation of the algorithm

Starting from the continuous time Fourier Transformation, the discrete Fourier
Transformation can be derived as a function of sample points (N):
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This formula can be regarded as a matrix WN
nk multiplied by the input data vector x(n). This

simple DFT has the complexity N2. The coefficients of the matrix WN
nk will be denoted in

the following as twiddle factors.

In order to derive the radix-2 FFT algorithm, we decompose the transformation into two
partial transformations, one containing the input data with even indices, and the other with
odd. Exploiting symmetries W WN
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The number of multiplications can be further cut to ( log )N N  by repetitive employing this
process to the partial transformations P(k) and Q(k) till they are completely decomposed
into 2 point DFTs (Discrete Fourier Transformations). The 2-point DFT is commonly
referred to as the butterfly operation. The butterfly requires two complex multiplications
resulting in four real valued multiplications for computing the terms P(k) and WN

k Q(k).

Pn+1 = Pn + Qn⋅WN
k n=stage

Qn+1 = Pn - Qn⋅WN
k

since WN
k = e-j(2π/N)k = cos(u) - j sin(u)

and u = (2π/N)k

Having only real valued input data x(n), the computational effort of a N point FFT can be
reduced to a N/2 point complex FFT. Firstly, even indexed data h n x n( ) ( )= 2  and odd
indexed data g n x n( ) ( )= +2 1 are separated. The index k is running from 0 to N-1. h(n) and
g(n) have the spectra H(k) and G(k) respectively. The spectrum X(k) can be decomposed
into the spectra H(k) and G(k) as follows:

x n X k H k j j G kFourier Transformation k
N

k
N( ) ( ) ( ) (cos sin ) ( ) → = + −2 2π π

In order to cut the above N point transformation into an N/2 point transformation a
complex input vector y(n) = h(n) + jg(n) is formed with the index n running from 0 to N/2-1.
The real input values are formed by the even indexed input data h(n). The imaginary part
is formed by the odd indexed input data g(n). Then y(n) is transformed into the frequency
domain resulting in a spectrum consisting of a superposition of the spectra  H(k) and G(k).

y n h n jg n Y k H k jG k R k jI kFourier Transformation( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= +  → = + = +

Now the complex spectra H(k) and G(k) have to be extracted out of the complex spectrum
Y k H k jG k R k jI k( ) ( ) ( ) ( ) ( )= + = + . By employing symmetry relations, the spectra H(k) and
G(k) can be derived from the spectrum Y(n) as follows:
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These spectra inserted into the equation for X(n) deliver the full spectrum.
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In order to illuminate the FFT algorithm, the example given below shall demonstrate the
computational process during an 8-point FFT. The input data consists of 8 complex
numbers X0, ... X7 which can also be perceived as 16 real numbers x(0)...x(15).
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Corresponding to the above butterfly operation, the input data are connected with each
other. Due to the nature of this operation the input data is sequentially ordered, while the
output data is in bitreversed order. In each stage four (=N/2) butterflies are computed. The
twiddle factor W in the 1st stage is always W8

0 = 1. In the 2nd stage the upper half
consists again of the butterflies from the previous stage. The second half of the butterflies
are computed with twiddle factor W8

2. In the third stage the twiddle factors of the previous
stage appear again in the upper half and the lower half contains the factors W8

1 and W8
3.

For an 8-point-FFT the twiddle factors WN
k = e-j(2π/N)k = cos(X) - j sin(X) have the

following values.

Twiddle factor cos(X) sin(X)
W8

0 1 0
W8

1 = e-j(π/4) ½√2 ½√2
W8

2 = e-j(π/2) 0 1
W8

3 = e-j(3π/4) -½√2 ½√2
W8

4 = e-jπ = - W8
0 -1 0

W8
5 = e-j(5π/4) = -

W8
1

½√2 ½√2

W8
6 = e-j(3π/2) = -

W8
2

0 1

W8
7 = e-j(7π/4) = W8

3 -½√2 ½√2

Because of the symmetry of the twiddle factor only the first four (W8
0 ,..., W8

3) must be
computed.

These four twiddle factors lead to degenerated butterflies. They can be used to
precompute the butterflies in the first three stages of the FFT to reduce the number of
multiplications. For the twiddle factors WN

0 , WN
1 , WN

2 and WN
3 the butterfly computation

can be simplified.

For WNk = WN
0 = 1 we have cos(X) = 1 ; sin(X) = 0. This results in a butterfly without any

multiplications:

Pn+1 = [Re(Pn) + Re(Qn) + j [Im(Pn) + Im(Qn)]
Qn+1 = [Re(Pn) - Re(Qn)] + j [Im(Pn) - Im(Qn)]
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For WNk = WN
1 = ½√2(1 - j) we get cos(X) = sin(X) = ½√2. This results in a butterfly for

the third stage where only two multiplications must be executed:

Pn+1 = [Re(Pn) + Re(Qn) ⋅ cos(X) + Im(Qn) ⋅ cos(X)] + j [Im(Pn) + Im(Qn) ⋅ cos(X) -
Re(Qn) ⋅ cos(X)]
Qn+1 = [Re(Pn) - Re(Qn) ⋅ cos(X) - Im(Qn) ⋅ cos(X)] + j [Im(Pn) - Im(Qn) ⋅ cos(X) +
Re(Qn) ⋅ cos(X)]

For WNk = WN
2 = -j we have cos(X) = 0 ; sin(X) = 1. This results in a butterfly without any

multiplications used in the second and third stage:

Pn+1 = [Re(Pn) + Im(Qn)] + j [Im(Pn) - Re(Qn)]
Qn+1 = [Re(Pn) - Im(Qn)] + j [Im(Pn) + Re(Qn)]

For WNk = WN
3 = ½√2(-1 - j) we get -cos(X) = sin(X) = ½√2. This results in a butterfly for

the third stage where only two multiplications must be executed:

Pn+1 = [Re(Pn) + Re(Qn) ⋅ cos(X) - Im(Qn) ⋅ cos(X)] + j [Im(Pn) + Im(Qn) ⋅ cos(X) +
Re(Qn) ⋅ cos(X)]
Qn+1 = [Re(Pn) - Re(Qn) ⋅ cos(X) + Im(Qn) ⋅ cos(X)] + j [Im(Pn) - Im(Qn) ⋅ cos(X) -
Re(Qn) ⋅ cos(X)]

The output  of the decimation in time FFT shows a bitreversed order that has to be
ordered to calculate the final frequency spectrum. Supposing the input data has been  in a
sequential order, the indices of the output data can be easily computed by bit reversing
the binary presentation of the input indices. The table below gives an example of the bit
reversal for an 8 point FFT.

Order of Input data Order of output data
bitreversed

index binary binary index
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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3 Implementation

For the implementation we assume real valued input data. Based on this assumption, a
real valued 1024 point FFT can be reduced to a 512 point complex FFT followed by an
unweave phase in order to compute the 1024 point spectrum. The 512 point complex FFT
consists of log2 (512) = 9 stages and each stage calculates 512/2 = 256 butterflies. The
twiddle factors in the first three stages are the same as for the 8 point complex FFT.

The input data is stored in the table FFT_IN which consists of 1024 16 bit words. Since
we perform an in-place FFT, the input data field will be overwritten by the output data.
However, the final output will be stored in the separate FFTOUT
output field. For providing the trigonomic functions, a table
(FFT_DAT) is stored encompassing the precomputed sinus and
cosines values. Since cos(x) = sin(x+π/4) the table consists of ¼
sinus period and ½ cosines period. Together they form a ¾
sinus period.

To rearrange the bitreversed output of the complex FFT and to calculate the twiddle factor
Wk, a bitreversal table (FFT_BR) has also been precomputed.

The input data and the trigonometric function table are represented by a 15 bit fixed-point
fraction in two’s complement. This means that the MSB of such a number represents the
sign, followed by the 15 bits representing a fraction of one.

s , b1 b2 b3 b4 ... b15
↑ ↑ ↑ ↑
sig
n

2-1 2-2 ... 2-15

examples:

binary hex dez value
0111 1111 1111 1111 7FFF 32767 +1
0110 0000 0000 0000 6000 24576 + 0.75
1010 0000 0000 0000 A000 -24576 - 0.75
1000 0000 0000 0000 8000 -32768 - 1

Since the addition of two numbers having the same sign might cause an overflow,
numbers have to be divided by 2 before adding them. This is done by an arithmetic shift
right. When multiplying two 15-bit-numbers, note that the signs of both are multiplied too,
and the result is stored in the 32-bit wide multiplication register.

s ← 15 bit → × s ← 15 bit → = s s ← 30 bit →

Therefore the result is equal to a scaled multiplication that means that it consists of the
multiplication and a subsequent arithmetic shift right as a side effect. Because 32 bit
precision is not required, only the first 16 bits contained in the MDH register are used for
further calculations.

Attached you will find a program flow chart. The first part of the program consists of a 512-
point complex radix-2 FFT which is executed in nine stages. To avoid multiplications by
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means of  the degenerated butterflies, 5 different Mid- and Inloops are implemented. The
idea is to cut the amount of calculation needed by using the degenerated butterflies in all
stages. This is very effective in the first three stages, but time savings decreases in the
rear stages.

Regarding the 512 complex point FFT, the number of twiddle factors amounts 512.
However, due to the symmetry only the first 256 (0..255) are used. In the program source
the twiddle factors denoted as W0, W4, W8, W12 refer to the angles 0, 90°, 45° and 135°.
Thus, W8

0  corresponds to W0, W8
2 to W4, W8

1 to W8, and W8
3 to W12.

Stage 1:Since in stage one all twiddle factors are W0, all 256 butterflies are performed in
Inloop_0.

Stage 2: 128 butterflies with W0 in Inloop_0
128 butterflies with W4 in Inloop_1

Stage 3: 64 butterflies with W0 in Inloop_0
64 butterflies with W4 in Inloop_1
64 butterflies with W8 in Inloop_2
64 butterflies with W12 in Inloop_3

Stage 4: 32 butterflies with W0 in Inloop_0
32 butterflies with W4 in Inloop_1
32 butterflies with W8 in Inloop_2
32 butterflies with W12 in Inloop_3
128 butterflies with Wk in Inloop

The second part of the program unweaves the bitreversed output of the 512-point FFT to
extract the 1024 point real valued FFT. Optional, the final stage of the algorithm
calculates an amplitude spectrum. On the last page you will find the register use during
program execution.

Assuming that the code is started out of the internal ROM, the input data is stored in the
external RAM and accessed via a 16-bit demultiplexed bus without wait states (Syscon:
ROMEN=1, Buscon: MTTC=1, MCTC = 1111, BTYP = 10) an execution time of 10 ms for
a real valued 1024-point FFT is achieved for the C165 running at 25 Mhz internally. The
code size amounts 828 bytes without data tables. The optional computation of the
amplitude spectrum consumes additional 2 ms. The execution time is independent from
the input data. Changing the number of sample points N_, the number of stages exp, and
reducing the tables, the algorithm can be tailored for various resolutions. In the table
below you will find execution times for different numbers of sample points.

64-Points 256- Points 1024- Points
SAB-C165 (25 MHz) 0,56 ms 2,6 ms 10,4 ms
SAB-C167CR (20
MHz)

0,7 ms 3,3 ms 13 ms
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This figures demonstrate that the C166 architecture is even superior to some signal
processors. This result is founded on a multiplication execution time of 400ns and the
RISC like register file. Using a more complex radix-4 FFT algorithm combining two
butterflies a further run time saving can be expected. Keeping the input and output tables
in the internal RAM an additional speed up can be achieved for the 64 and 256 point FFT.
If only parts of the spectrum have to be analyzed, a partial FFT can be performed [7] by
omitting all calculations not contributing to the frequency window.
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Flow chart of 1024-point real valued FFT

Outloop for the stages 1 - 9

9th stage executed

calculate absolute
 values

last element
processed

Absolute value "Absolute"
(calculate absolute values and write results to FFT_OUT)

Start

End

yes

yes

no

yes

no

no

Midloop_0
Inloop_0: compute butterflies with twiddlefactor W0

Midloop_2
Inloop_2: compute butterflies with twiddlefactor W8

all elements
processed

all elements
processed

all elements
processed

all elements
processed

END_Midloop

no

no

no

unweave complex FFT to get the result of the
real valued FFT

bitreversal of FFT_IN and generate butterflies

yes

yes

yes

yes

no

Midloop_1
Inloop_1: compute butterflies with twiddlefactor W4

Midloop_3
Inloop_3: compute butterflies with twiddlefactor W12

Midloop
Inloop: computation of remaining butterflies



Fast - Fourier - Transformation


Semiconductor Group 12 of 13 AP1634   03.97

Flowchart of the Midloop

counter in_loop > 0

no

Midloop

Inloop

decrement counter in_loop

Calculate Butterfly
Pm+1 = PR + QRcos(X) + QIsin(X) + j [PI + QIcos(X) - QRsin(X)]
Qm+1 = PR - QRcos(X) + QIsin(X) + j [PI - QIcos(X) - QRsin(X)]

increment index pointers

increment counter mid_loop

modify help counters

decrement counter out_loop

counter mid_loop < 2040

9th stage executed ?

Read input values
Re(Pm), Im(P m), Re(Qm), Im(Q m) from FFT_IN

Write output values
Re(Pm+1), Im(P m+1), Re(Qm+1), Im(Q m+1) to FFT_IN

set input pointers to index

Init counter of Inloop

Determination of Twiddle-factor

End Midloop

no

yes

yes

yes

no
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Register Use and content

Stage 1 to 9:

Stage1 Stage2 Stage3 Stage4 Stage5 Stage6 Stage7 Stage8 Stage9 Note
R0 9 8 7 6 5 4 3 2 1 Outloop
R1 1024 512 256 128 64 32 16 8 4 counter
R2 2048 1024 512 256 128 64 32 16 8
R3 0 , N*2-

4
0...N*
2-4

0...N*
2-4

0...N*
2-4

0...N*
2-4

0...N*
2-4

0...N*
2-4

0...N*
2-4

0...N*
2-4

Midloop

R4 Twid/B
F

Twid/B
F

Twid/B
F

Twid/B
F

Twid/B
F

Twid/B
F

Twid/B
F

R5 pP pP pP pP pP pP pP pP pP pP_FFT_IN
R6 pQ pQ pQ pQ pQ pQ pQ pQ pQ pQ_FFT_IN
R7 BF BF cos[k] cos[k] cos[k] cos[k] cos[k] cos[k] cos[k]
R8 BF BF BF sin[k] sin[k] sin[k] sin[k] sin[k] sin[k]
R9 BF BF BF BF BF BF BF BF BF
R1
0

BF BF BF BF BF BF BF BF BF

R1
1

BF BF BF BF BF BF BF BF BF

R1
2

BF BF BF BF BF BF BF BF BF

R1
3

256...0 128...0 64...0 32...0 16...0 8...0 4...0 2...0 1, 0 Inloop

R1
4

256 128 64 32 16 8 4 2 1

R1
5

p_FFT_I
n

p_FFT
_In

p_FFT
_In

p_FFT
_In

p_FFT
_In

p_FFT
_In

p_FFT
_In

p_FFT
_In

p_FFT
_In

p_FFT_In

N = number of samples (1024); BF = butterfly; Twid = twiddle factor; pP= pointer onto
element Pn; pQ= pointer onto element Qn

Stage 10 and procedure „Absolute“:

Stage 10 Absolute Stage10 Absolute
R0 Input (Low) R8 cos[k]
R1 Input a Input (High) R9 Input c
R2 Output R10
R3 temp temp R11 Input d
R4 sin[k] temp R12 0,2,4,6,8,...,10

22
R5 Input b temp R13
R6 temp R14 FFT_OUT
R7 temp temp R15


