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INTRODUCTION

Many Analog-to-Digital Converters (ADC) are
used to measure the level or magnitude of static
signals. Applications include the measurement of
weight, pressure, and temperature. These appli-
cations involve low-level signals which require
high resolution and accuracy. An example is a
weigh-scale that can handle up to a 5 kilogram
load and yet resolve the measurement to 10 mil-
ligrams. The ratio of maximum load to lowest
resolvable unit is five hundred thousand to one.
This requires the weigh-scale’s ADC to digitize a
load cell’s signal with a resolution of 500,000
counts.

When working with high resolution ADCs, an
understanding of the error and noise associated
with the conversion process is required. The goal
for this application note is to show how histo-
gram analysis is used to quantify static
performance. Sample sets of data are collected
and used to measure noise and offset. Statistical
techniques are used to determine the "goodness"
and confidence interval associated with the esti-
mates. Averaging is addressed as a means of
decreasing uncertainty and improving resolution.

In an ideal situation, the output of an ADC
would be exact with no offset error, gain error,
nor noise. However, the actual output from the
ADC includes error and noise. Static testing
methods can be used to evaluate the ADC’s per-
formance. A dc signal is applied to the ADC’s
input and the digital output words are collected.
The signal’s level is adjusted to measure offset
and gain errors associated with deviations in the
slope and intercept of the ADC’s transfer func-
tion. Noise is measured as the variability of the
output for a constant input.

Statistical techniques can be used to acquire per-
formance measurements, assess the effects of
noise, as well as compensate for the noise. An
ADC’s output varies for a constant input due to
noise. The noise is defined by a Probability Den-

sity Function (PDF), which represents the prob-
ability of discrete events. Statistical parameters
can be calculated from the PDF. The PDF’s
shape describes the certainty of the ADC’s out-
put and its noise characteristics.

Noise histogram analysis assumes that the noise
is random with a Gaussian distribution. This
means that the noise amplitude at a given instant
is uncorrelated with the output amplitude at any
other instant. A sample set of random noise pro-
duces a normal distribution which is used to
estimate the PDF. If the noise is not random and
does not have a normal distribution, the follow-
ing histogram analysis would not apply.
Examples of non-Gaussian noise include 1/f
noise, clock coupling, switching power supply
noise, and power line interference.

The ensuing sections discuss noise histogram
analysis and  the estimation of unknown parame-
ters. The discussion addresses sampling
requirements, statistics, and performance trade-
offs. Statistical methods are used to determine
"goodness" and confidence intervals of parame-
ters estimated from sampled data. Goodness
relates to how well the sample set parameters
correlate to the actual system. Averaging is dis-
cussed as a method of reducing uncertainty and
improving resolution. This paper will lead to an
understanding of sampling issues and the trade-
offs that can be made to improve performance
and the consequences of the various choices
among sample size, confidence level, and
throughput.

NOISE HISTOGRAM DESCRIPTION

Usually the PDF describing the ADC noise is not
specified. The PDF can be estimated by static
testing. This estimated PDF is actually a histo-
gram plot of the occurrences of a random
variable versus the individual variations. For an
ADC, the random variable is the resulting digital
codes, so the frequency at which each code oc-
curs is plotted against each discrete code.
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In a noiseless ADC, the output code for a spe-
cific input voltage will always be the same value.
The histogram plot for a noiseless converter is
shown in Figure 1. If noise sources are present
in the ADC, the histogram plot of the output
codes contains more than one value. Figure 2 is
a histogram plot of an ADC with internal noise.
The histogram suggests that the output for a sin-
gle input can be one of eleven possible codes.

Electrical noise resulting from random effects
forms a Gaussian or normal distribution, which
is a bell-shaped curve called a normal curve. The
Gaussian PDF is continuous and completely de-
termined with the specification of a mean (µ)
and variance (σ2). The Gaussian PDF is defined
by the following equation: 

p(x) =  
n

√2π    σ
e − (x−µ)2⁄ 2σ2

            n  =  1    for the actual PDF.

Other values for n scale the PDF to fit a sample
set. The data presented in Figure 2 can be used
to estimate the PDF. Figure 3 plots the histogram
of an ADC with noise along with its estimated
PDF. The mean and variance were estimated
from the sample set of data. From these PDF pa-
rameters, the ADC’s performance can be
quantified. The mean is the expected or average
value. It is used to measure offset errors. The
variance describes the variability of the distribu-
tion about the mean. It is used as a measurement
of uncertainty or noise. The square root of the
variance is called the standard deviation (σ), and
it is a measure of the effective or rms noise. The
peak-to-peak noise can be determined from the
rms noise value.

The Gaussian PDF can not be used to measure
all types of noise. When using a normal or
Gaussian distribution to estimate the PDF, the
noise must be random. Figure 4 illustrates a his-
togram of non-random noise. Notice that the

Figure 1. Histogram for a Noiseless ADC

Figure 2. Histogram for an ADC with Noise

Figure 3. Histogram and Estimated PDF
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histogram distribution does not possess the fa-
miliar bell-shape. This histogram is possibly the
result of 60 Hz line interference or other type of
sinusoidal noise. The PDF resembles that of a
sine wave, which has a "cusp-shaped" distribu-
tion.

Figure 5 is another example of a PDF not having
a Gaussian shape. Here, the reason is due to the
ADC’s poor differential nonlinearity (DNL).
Poor DNL results in uneven code widths, which
skew the distribution. Delta-Sigma and self-cali-
brating ADCs possess good DNL specifications.
Good DNL is very important for applications
which use averaging to improve resolution.

The histogram must possess a bell-shape distri-
bution or the estimated Gaussian PDF will not
correlate to the actual system. It is good practice
to view the noise distribution and verify that ran-
dom noise is being analyzed. If the noise is not
random, the Gaussian PDF equation can not be
used to model the histogram.

EXAMPLE

Figure 6 is a noise histogram of a 20-bit ADC
with a grounded analog input, and ± 2.5 volt in-
put range. For an ideal, noise free system, the
expected output would always be zero. However,
the experimental 1024-sample set ranges from

negative seven to positive five. Since the digital
codes vary by more then one count, the system
noise exceeds quantization error causing an un-
certainty associated with the output. The range
of code variations requires the histogram to con-
tain at least thirteen discrete ranges or cells.
Table 1 lists the number of occurrences of the
fifteen cells used to create the histogram.

A PDF can be estimated by using statistical
functions to characterize sampled data. Assuming
the system noise is Gaussian, the noise can be
measured by collecting a set of n samples from a
normal population with mean (µ) and variance
(σ2) and calculating the sample mean (Χ) and
sample variance (S2). 
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Figure 4. Non-random Noise Histogram
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Figure 5. DNL Effects on a Noise Histogram
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Χ and S2 are estimators for the system µ and σ2.
This information is used to create a mathemati-
cal model of the system’s PDF. From the sample
set of data used to create Figure 6, Χ = -0.98
and S2 = 3.96. The PDF for Figure 6 can be
modeled by substituting n, Χ, and S2 into the
scaled Gaussian PDF equation. 

p(x) =  
n

√2π    σ
e − (x−µ)2⁄ 2σ2

Substituting Χ for µ, S for σ, and S2 for σ2.

p(x)   =   
1024

√2π    1.99
e − (x+0.98)2⁄ (2 ∗ 3.96)

Figure 7 overlays the estimated PDF over the
histogram of 1024 samples shown in Figure 6.
Notice that the PDF and histogram are highly
correlated and the estimated PDF seems to be a
good model of the actual system.

Continuing with the assumption that the data in
Figure 7 has a normal distribution, the perform-
ance of the ADC can be quantified using the
measurements based on estimates for the mean
and standard deviation. 

The sample mean in Figure 7 is -0.98 counts. A
perfect ADC, operating in the same mode with
its input grounded, has a mean of zero. Such a
mean deviation from ideal is called an offset. In
terms of voltage,   the  ADC’s Zero Offset in
Figure 7 is -0.98 counts or -4.67 µV

Figure 6. Noise Histogram for a 20-bit ADC

CELL -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Occurrences 0 1 8 32 64 124 181 204 169 126 76 32 6 1 0

Table 1. Data for Histogram in Figure 6
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(1 count = 5 volts  ⁄ 220)) . The Full Scale Error is
measured in a similar manner, by calculating a
mean for a full-scale input signal.

The PDF’s shape, which is used in noise calcula-
tions, is defined by the sample variance  or its
positive square root called the sample standard
deviation (S). The standard deviation of a noise
distribution is a measure of the rms or effective
noise. In Figure 7, the rms noise is 1.99 counts
or 9.49 µV. Additionally, the peak-to-peak noise
can be calculated by using the standard devia-
tion. Peak-to-peak noise is defined as the interval
which contains six standard deviations. For a
normal distribution, this interval represents
99.6% of the occurances. In Figure 7, the peak-
to-peak noise is 11.94 counts or 56.93 µV. 

CONFIDENCE INTERVAL ESTIMATE 

In the preceding section, the performance of an
ADC was quantified from a sample set of data.
For the data in Figure 7, the offset is calculated
at -4.67 µV, and the noise at 9.49 µV rms and

56.93 µV peak-to-peak. Since these values are
calculated from sampled data, a degree of uncer-
tainty is associated with the estimated
performance.

Using statistics, confidence intervals can be cal-
culated for the estimated performance values.
First a confidence interval for σ2 is described.
The accuracy of the model derived from sampled
data depends upon how well the sample set re-
sembles the actual system. The sample
distribution alone is not useful in determining
how well the sample variance correlates to the
actual variance. However, a confidence interval
can be obtained from the sample data. If the de-
grees of freedom ( v ) and the actual system
variance (σ2) are included with S2, then the ran-

dom variable  [  (n−1)S
2⁄σ2  ] has a chi-squared

distribution with  v  degrees of freedom, where
v = n−1 for n number of samples.

χ2 = (n−1) S
2

σ2 

Χ = -0.98
S  = 1.99
S2= 3.96

Figure 7. Histogram and Estimated PDF
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By treating the variance as a chi-squared vari-
able, the variance PDF becomes a function of the
degrees of freedom. Now the chi-squared distri-
bution can be used to determine the accuracy of
S2 and state  σ2 as a confidence interval.

Chi-squared percentiles can be obtained from
statistics tables. Statistic tables may not be avail-
able for large sample sizes. Fortunately, as the
number of samples or degrees of freedom in-
creases, a chi-squared distribution approaches a
normal distribution. A good approximation of a

chi-squared percentile, χ2(α;v), in terms of a
standard normal percentile [z(α)] is given by:

χ2 (α ; v)  ≈  0.5 ( z(α)+√2v−1 )2   , v > 100

In the above formula, χ2is a function of α = area
under the left tail of the standard normal curve
and  v = degrees of freedom. 

For example, a 99% confidence interval is deter-

mined for  χ2 when n=1024:

Covering 99% of the total area leaves 1% uncov-
ered, which is divided equally between the left
and right tails. Thus the desired percentiles are
α = 0.005 and α = 0.995. From a table for a
Normal Distribution curve, the corresponding
percentile points z(α) are -2.575 and 2.575 re-
spectively. Thus 99% of the area under the
standard Normal Distribution lies between -2.575
and 2.575.

Substituting values for  z(α) and  v  in the

χ2(α;v) formula, a range of χ2 values is calcu-
lated.

χ2 (0.005 ; 1023)  =  909.37

χ2 (0.995 ; 1023)  =  1142.26

From these numbers, it can be stated that χ2 has
a 0.5% possibility of being less than 909.37 and
99.5% possibility of being less than 1142.26.

Combining these two conditions, χ2 has a 99%
possibility of being greater than 909.37 and less
than 1142.26.

Finally, a 99% confidence interval for σ2 is ob-
tained by substituting  (n−1) S2

⁄σ2 for χ2. Here the

values  n = 1024 and S2 = 3.96 are used to fur-
ther illustrate Figure 7. 

909.37  <  χ2 <  1142.26

909.37 < (n−1) S2
⁄σ2  and (n−1) S2

⁄σ2 < 1142.26

σ2 < (n−1) S
2

909.37
  and  (n−1) S

2

1142.26
  <  σ2

3.55  <  σ2 <  4.45

The calculated sample variance (S2) is 3.96
LSB2s. There is a 99% confidence that the actual
system variance (σ2) is between 3.55 and 4.45
LSB2s. The uncertainty associated with 3.96 is
less than a half LSB2 (4.45 - 3.96 = 0.49). That
is to say the maximum error is 0.49, with 99%
confidence.

If the confidence interval or uncertainty is unac-
ceptable, adjustments can be made. Notice that
the interval width is effected by two variables
z(α) and n. The interval width can be reduced by
either increasing the sample set size or tolerating
more uncertainty. 

The following calculations using peak-to-peak
noise show how z(α) and n affect the confidence
interval. Peak-to-peak noise is the uncertainty as-
sociated with a single sample. Above, the 99%
confidence interval was calculated for the vari-
ance. In Figure 7, the estimated variance is
between 3.55 and 4.45 with 99% confidence.
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This interval can be translated for peak-to-peak
noise:

peak-to-peak noise = 3σ + 3σ = 6σ 
6 √3.55  <  peak-to-peak noise <  6 √4.45

11.30  <  peak-to-peak noise <  12.66
(99% Confidence Interval)

The width of this confidence interval is 12.66 -
11.30 = 1.36 counts. If the confidence is relaxed

to 95%, χ2(α;v) is recalculated using α = 0.025
and  α = 0.975. This results in the confidence
interval width for peak-to-peak noise being re-
duced by 0.32 counts:

11.45  <  peak-to-peak noise <  12.49
(95% Confidence Interval)

If the set is increased to 2048 samples and the

sample variance remains at 3.96, χ2(α;v) is re-
calculated using  v = 2047 and the 99%
confidence interval becomes:

11.48  <  peak-to-peak noise <  12.44
(99% Confidence Interval)

The original 99% confidence interval is reduced
from 1.36 to 0.96 counts by increasing the sam-
ple set. As seen, thousands of samples may be
required to reduce the peak-to-peak noise confi-

dence interval to an acceptable width. The size
of the sample set depends upon system capabili-
ties and performance requirements. Large data
sets are affected by memory size and processing
capabilities of the data collection equipment, and
ADC throughput. Table 2 indicates how the de-
gree of confidence and number of samples affect
the confidence interval.

AVERAGING

Once the ADC noise has been characterized, the
effect of averaging can be analyzed. When sam-
ples are collected, the average or sample mean
(Χ) is an estimator of the population mean (µ).
Χ is likely to estimate µ very closely when the
sample size is large. 

Again a confidence interval describes how
closely Χ  estimates µ, and the sample size gov-
erns the width of the interval. The distribution of

Χ is Gaussian with a mean µ and variance σ2

n
. In

the case where the ADC output is not Gaussian,
the distribution of Χ will approach the above
gaussian  distribution as n  gets large, by the
Central Limit Theorem. The confidence interval
for µ is:

Confidence Number of
Samples

α z(α) χ2 σ2 Range Peak-to-
Peak

Noise Range
99% 1024 0.005

0.995
z(0.005) = -2.575
z(0.995) = 2.575

909.37
1142.26

3.55 < σ2 < 4.45 11.30 to
12.66

95% 1024 0.025
0.975

z(0.025) = -1.96
z(0.975) = 1.96

935.79
1113.06

3.64 < σ2 < 4.33 11.45 to
12.49

99% 2048 0.005
0.995

z(0.005) = -2.575
z(0.995) = 2.575

1885.08
2214.55

3.66 < σ2 < 4.30 11.48 to
12.44

95% 2048 0.025
0.975

z(0.025) = -1.96
z(0.975) = 1.96

1923.03
2173.81

3.73 < σ2 < 4.22 11.59 to
12.33

Table 2. Degree of Confidence and Sample Size Effects on the Confidence Interval
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Χ - z(α) 
σ

√n
  <  µ  <  Χ + z(α) 

σ
√n

 

where α  is set by the confidence interval.

Note that z(α) σ is the peak noise and 2 z(α) σ is
the peak-to-peak noise value. Restated, the actual
mean differs from the sample mean by a range
of the peak-to-peak noise divided by the square
root of the number of samples. Thus averaging
multiple samples reduces the error by 1⁄√n .

µ = Χ  ± 
peak−noise

√n

The peak-to-peak noise of the sample set for
Figure 7 is 11.94 counts. If one sample is taken,
the 99.6% confidence interval is 11.94 counts or
± 5.97 counts. If all 1024 samples are averaged,
the actual population mean is between -1.17 and
-0.79 with a 99.6% confidence. The uncertainty
is reduced to ± 0.19 counts. Note that the quanti-
zation error for an ideal ADC produces an error
of ± 0.5 counts. Averaging 1024 samples im-
proves this noisy 20-bit ADC’s accuracy to better
than 21 bits!

As shown above, averaging can reduce the ef-
fects of Gaussian distributed noise as well as
quantization error. However, the tradeoff is in re-
duced throughput. To get the confidence interval
to less than one count, √n  has to be greater than
the peak-to-peak noise. For the sample set of
data plotted in Figure 7, 143 samples ( 11.942)
need to be acquired and averaged. Over 36,496
samples are required to create a 24-bit ADC with
less than one count of peak-to-peak noise (re-
duce the uncertainty of a 20-bit converter to

±1/32 counts). This would reduce a 100kHz,
ADC to an effective throughput of 2.74 Hz. Av-
eraging sacrifices throughput for improved
resolution and reduced uncertainty.

CONCLUSION

Statistical methods are available to measure the
performance of an ADC. The testing involves in-
putting a noise free, accurate DC signal to the
ADC and collecting a sample set of data points.
The sample set is used to calculate estimators for
the mean and standard deviation. More statistics
are used to decide the "goodness" and confi-
dence level associated with the estimates.
Averaging was introduced for reducing uncer-
tainty and improving resolution. However,
averaging reduces the ADC’s effective through-
put. Figure 8 illustrates the tradeoff between
reducing uncertainty and lowering the effective
throughput. 

The same methods used to measure an ADC’s
performance can be used to measure the per-
formance of an entire system which includes
additional components containing multiple noise
sources and offsets. During system integration or
production test, tests can be performed as sub-
systems are added. This can be used to measure
the performance of individual subsystems or iso-
late problems to a subsystem or component. The
results can then be used with compensation tech-
niques to improve system performance or to
determine corrective actions.
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TABLE OF VARIABLES

µ mean
σ standard deviation
σ2 variance

 p(x) probability density function

Χ sample mean
S sample standard deviation
S2 sample variance

χ2 chi-squared variable
 n number of samples
v  degrees of freedom.
α area under the normalized curve 
z standard normal distribution
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T
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Reduction in Uncertainty (%)

Effects of Averaging Multiple Samples

Figure 8. Tradeoff between Uncertainty and throughput
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