
1

Copyright Cirrus Logic, Inc. 1998
(All Rights Reserved)

Cirrus Logic, Inc.
Crystal Semiconductor Products Division
P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.crystal.com

AN27

Application Note

A TUTORIAL ON MIDI AND WAVETABLE MUSIC SYNTHESIS
By Jim Heckroth

INTRODUCTION

The Musical Instrument Digital Interface (MIDI)
protocol has been widely accepted and utilized by
musicians and composers since its conception in
the 1982/1983 time frame. MIDI data is a very ef-
ficient method of representing musical perfor-
mance information, and this makes MIDI an
attractive protocol for computer applications which
produce sound, such as multimedia presentations
or computer games. However, the lack of standard-
ization of synthesizer capabilities hindered appli-
cations developers and presented MIDI users with
a rather steep learning curve to overcome. Fortu-
nately, thanks to the publication of the General
MIDI System specification, wide acceptance of the
most common PC/MIDI interfaces, support for
MIDI in Microsoft WINDOWS, and the evolution
of low-cost high-quality wavetable music synthe-
sizers, the MIDI protocol is now seeing widespread
use in a growing number of applications. This pa-
per gives a brief overview of the standards and ter-
minology associated with the generation of sound
using the MIDI protocol and wavetable music syn-
thesizers.

USE OF MIDI IN MULTIMEDIA
APPLICATIONS

Originally developed to allow musicians to connect
synthesizers together, the MIDI protocol is now
finding widespread use in the generation of sound
for games and multimedia applications. There are
several advantages to generating sound with a
MIDI synthesizer rather than using sampled audio

from disk or CD-ROM. The first advantage is stor-
age space. Data files used to store digitally sampled
audio in PCM format (such as .WAV files) tend to
be quite large. This is especially true for lengthy
musical pieces captured in stereo using high sam-
pling rates. MIDI data files, on the other hand, are
extremely small when compared with sampled au-
dio files. For instance, files containing high quality
stereo sampled audio require about 10 MBytes of
data per minute of sound, while a typical MIDI se-
quence might consume less than 10 KBytes of data
per minute of sound. This is because the MIDI file
does not contain the sampled audio data, it contains
only the instructions needed by a synthesizer to
play the sounds. These instructions are in the form
of MIDI messages, which instruct the synthesizer
which sounds to use, which notes to play, and how
loud to play each note. The actual sounds are then
generated by the synthesizer.

The smaller file size also means that less of the PCs
bandwidth is utilized in spooling this data out to the
peripheral which is generating sound. Other advan-
tages of utilizing MIDI to generate sounds include
the ability to easily edit the music, and the ability to
change the playback speed and the pitch or key of
the sounds independently. This last point is partic-
ularly important in synthesis applications such as
karaoke equipment, where the musical key and
tempo of a song may be selected by the user.

FEB ‘98
AN27REV4

AN27

2 AN27REV4

MIDI SYSTEMS

The Musical Instrument Digital Interface (MIDI)
protocol provides a standardized and efficient
means of conveying musical performance informa-
tion as electronic data. MIDI information is trans-
mitted in "MIDI messages", which can be thought
of as instructions which tell a music synthesizer
how to play a piece of music. The Synthesizer re-
ceiving the MIDI data must generate the actual
sounds. The MIDI 1.0 Detailed Specification, pub-
lished by the International MIDI Association, pro-
vides a complete description of the MIDI protocol.

The MIDI data stream is a unidirectional asynchro-
nous bit stream at 31.25 kbits/sec. with 10 bits
transmitted per byte (a start bit, 8 data bits, and one
stop bit). The MIDI interface on a MIDI instrument
will generally include three different MIDI connec-
tors, labeled IN, OUT, and THRU. The MIDI data
stream is usually originated by a MIDI controller,
such as a musical instrument keyboard, or by a
MIDI sequencer. A MIDI controller is a device
which is played as an instrument, and it translates
the performance into a MIDI data stream in real
time (as it is played). A MIDI sequencer is a device
which allows MIDI data sequences to be captured,
stored, edited, combined, and replayed. The MIDI
data output from a MIDI controller or sequencer is
transmitted via the devices’ MIDI OUT connector.

The recipient of this MIDI data stream is common-
ly a MIDI sound generator or sound module, which
will receive MIDI messages at its MIDI IN connec-
tor, and respond to these messages by playing
sounds. Figure 1 shows a simple MIDI system,
consisting of a MIDI keyboard controller and a
MIDI sound module. Note that many MIDI key-
board instruments include both the keyboard con-
troller and the MIDI sound module functions
within the same unit. In these units, there is an in-
ternal link between the keyboard and the sound
module which may be enabled or disabled by set-
ting the "local control" function of the instrument
to ON or OFF respectively.

The single physical MIDI channel is divided into
16 logical channels by the inclusion of a 4-bit chan-
nel number within many of the MIDI messages. A
musical instrument keyboard can generally be set
to transmit on any one of the sixteen MIDI chan-
nels. A MIDI sound source, or sound module, can
be set to receive on specific MIDI channel(s). In the
system depicted in Figure 1, the sound module
would have to be set to receive the channel which
the keyboard controller is transmitting on in order
to play sounds.

Information received on the MIDI IN connector of
a MIDI device is transmitted back out (repeated) at
the devices’ MIDI THRU connector. Several MIDI
sound modules can be daisy-chained by connecting
the THRU output of one device to the IN connector
of the next device downstream in the chain.

Figure 1. A Simple MIDI System

AN27

AN27REV4 3

Figure 2 shows a more elaborate MIDI system. In
this case, a MIDI keyboard controller is used as an
input device to a MIDI sequencer, and there are
several sound modules connected to the sequenc-
er’s MIDI OUT port. A composer might utilize a
system like this to write a piece of music consisting
of several different parts, where each part is written
for a different instrument. The composer would
play the individual parts on the keyboard one at a
time, and these individual parts would be captured
by the sequencer. The sequencer would then play
the parts back together through the sound modules.
Each part would be played on a different MIDI
channel, and the sound modules would be set to re-
ceive different channels. For example, Sound mod-
ule number 1 might be set to play the part received
on channel 1 using a piano sound, while module 2
plays the information received on channel 5 using
an acoustic bass sound, and the drum machine
plays the percussion part received on MIDI
channel 10.

In the last example, a different sound module is
used to play each part. However, sound modules
which are "multi-timbral" are capable of playing
several different parts simultaneously. A single
multi-timbral sound module might be configured to

receive the piano part on channel 1, the bass part on
channel 5, and the drum part on channel 10, and
would play all three parts simultaneously.

Figure 3 depicts a PC-based MIDI system. In this
system, the PC is equipped with an internal MIDI
interface card which sends MIDI data to an external
multi-timbral MIDI synthesizer module. Applica-
tion software, such as Multimedia presentation
packages, educational software, or games, send in-
formation to the MIDI interface card over the PC
bus. The MIDI interface converts this information
into MIDI messages which are sent to the sound
module. Since this is a multi-timbral module, it can
play many different musical parts, such as piano,
bass and drums, at the same time. Sophisticated
MIDI sequencer software packages are also avail-
able for the PC. With this software running on the
PC, a user could connect a MIDI keyboard control-
ler to the MIDI IN port of the MIDI interface card,
and have the same music composition capabilities
discussed in the last paragraph.

There are a number of different configurations of
PC-based MIDI systems possible. For instance, the
MIDI interface and the MIDI sound module might
be combined on the PC add-in card. In fact, the Mi-
crosoft Multimedia PC (MPC) Specification states

Figure 2. An Expanded MIDI System

AN27

4 AN27REV4

that a PC add-in sound card must have an on-board
synthesizer in order to be MPC compliant. Until re-
cently, most MPC compliant sound cards included
FM synthesizers with limited capabilities and mar-
ginal sound quality. With these systems, an exter-
nal wavetable synthesizer module might be added
to get better sound quality. Recently, more ad-
vanced sound cards have been appearing which in-
clude high quality wavetable music synthesizers
on-board, or as a daughter-card options. With the
increasing use of the MIDI protocol in PC applica-
tions, this trend is sure to continue.

MIDI MESSAGES

A MIDI message is made up of an eight bit status
byte which is generally followed by one or two data
bytes. There are a number of different types of
MIDI messages. At the highest level, MIDI mes-
sages are classified as being either Channel Mes-
sages or System Messages. Channel messages are
those which apply to a specific channel, and the
channel number is included in the status byte for
these messages. System messages are not channel
specific, and no channel number is indicated in
their status bytes. Channel Messages may be fur-
ther classified as being either Channel Voice Mes-
sages, or Mode Messages. Channel Voice

Messages carry musical performance data, and
these messages comprise most of the traffic in a
typical MIDI data stream. Channel Mode messages
affect the way a receiving instrument will respond
to the Channel Voice messages. MIDI System
Messages are classified as being System Common
Messages, System Real Time Messages, or System
Exclusive Messages. System Common messages
are intended for all receivers in the system. System
Real Time messages are used for synchronization
between clock-based MIDI components. System
Exclusive messages include a Manufacturer’s Iden-
tification (ID) code, and are used to transfer any
number of data bytes in a format specified by the
referenced manufacturer. The various classes of
MIDI messages are discussed in more detail in the
following paragraphs.

Channel Voice Messages

Channel Voice Messages are used to send musical
performance information. The messages in this cat-
egory are the Note On, Note Off, Polyphonic Key
Pressure, Channel Pressure, Pitch Bend Change,
Program Change, and the Control Change message.

In MIDI systems, the activation of a particular note
and the release of the same note are considered as
two separate events. When a key is pressed on a

Figure 3. PC-Based MIDI System

AN27

AN27REV4 5

MIDI keyboard instrument or MIDI keyboard con-
troller, the keyboard sends a Note On message on
the MIDI OUT port. The keyboard may be set to
transmit on any one of the sixteen logical MIDI
channels, and the status byte for the Note On mes-
sage will indicate the selected channel number. The
Note On status byte is followed by two data bytes,
which specify key number (indicating which key
was pressed) and velocity (how hard the key was
pressed). The key number is used in the receiving
synthesizer to select which note should be played,
and the velocity is normally used to control the am-
plitude of the note. When the key is released, the
keyboard instrument or controller will send a Note
Off message. The Note Off message also includes
data bytes for the key number and for the velocity
with which the key was released. The Note Off ve-
locity information is normally ignored.

Some MIDI keyboard instruments have the ability
to sense the amount of pressure which is being ap-
plied to the keys while they are depressed. This
pressure information, commonly called "after-
touch", may be used to control some aspects of the
sound produced by the synthesizer (vibrato, for ex-
ample). If the keyboard has a pressure sensor for
each key, then the resulting "polyphonic after-
touch" information would be sent in the form of
Polyphonic Key Pressure messages. These messag-
es include separate data bytes for key number and
pressure amount. It is currently more common for
keyboard instruments to sense only a single pres-
sure level for the entire keyboard. This "channel af-
tertouch" information is sent using the Channel
Pressure message, which needs only one data byte
to specify the pressure value.

The Pitch Bend Change message is normally sent
from a keyboard instrument in response to changes
in position of the pitch bend wheel. The pitch bend
information is used to modify the pitch of sounds
being played on a given channel. The Pitch Bend
message includes two data bytes to specify the
pitch bend value. Two bytes are required to allow

fine enough resolution to make pitch changes re-
sulting from movement of the pitch bend wheel
seem to occur in a continuous manner rather than in
steps.

The Program Change message is used to specify
the type of instrument which should be used to play
sounds on a given channel. This message needs
only one data byte which specifies the new pro-
gram number.

MIDI Control Change messages are used to control
a wide variety of functions in a synthesizer. Control
Change messages, like other MIDI channel mes-
sages, should only affect the channel number indi-
cated in the status byte. The control change status
byte is followed by one data byte indicating the
"controller number", and a second byte which spec-
ifies the "control value". The controller number
identifies which function of the synthesizer is to be
controlled by the message.

Controller Numbers 0 - 31 are generally used for
sending data from switches, wheels, faders, or ped-
als on a MIDI controller device such as a musical
instrument keyboard. Control numbers 32 - 63 are
used to send an optional Least Significant Byte
(LSB) for control numbers 0 through 31, respec-
tively. Some examples of synthesizer functions
which may be controlled are modulation (controller
number 1), volume (controller number 7), and pan
(controller number 10). Controller numbers 64
through 67 are used for switched functions. these
are the sustain/damper pedal (controller number
64), portamento (controller number 65), sostenuto
pedal (controller number 66), and soft pedal (con-
troller number 67). Controller numbers 16-19 and
80-83 are defined to be general purpose controllers,
and controller numbers 48-51 may be used to send
an optional LSB for controller numbers 16-19. Sev-
eral of the MIDI controllers merit more detailed de-
scriptions, and these controllers are described in the
following paragraphs.

AN27

6 AN27REV4

Controller number zero is defined as the bank se-
lect. The bank select function is used in some syn-
thesizers in conjunction with the MIDI Program
Change message to expand the number of different
instrument sounds which may be specified (the
Program Change message alone allows selection of
one of 128 possible program numbers). The addi-
tional sounds are commonly organized as "varia-
tions" of the 128 addressed by the Program Change
message. Variations are selected by preceding the
Program Change message with a Control Change
message which specifies a new value for controller
zero (see the Roland General Synthesizer Standard
topic covered later in this paper).

Controller numbers 91 through 95 may be used to
control the depth or level of special effects, such as
reverb or chorus, in synthesizers which have these
capabilities.

Controller number 6 (Data Entry), in conjunction
with Controller numbers 96 (Data Increment), 97
(Data Decrement), 98 (Registered Parameter Num-
ber LSB), 99 (Registered Parameter Number
MSB), 100 (Non-Registered Parameter Number
LSB), and 101 (Non-Registered Parameter Num-
ber MSB), may be used to send parameter data to a
synthesizer in order to edit sound patches. Regis-
tered parameters are those which have been as-
signed some particular function by the MIDI
Manufacturers Association (MMA) and the Japan
MIDI Standards Committee (JMSC). For example,
there are Registered Parameter numbers assigned
to control pitch bend sensitivity and master tuning
for a synthesizer. Non-Registered parameters have
not been assigned specific functions, and may be
used for different functions by different manufac-
turers. Parameter data is transferred by first select-
ing the parameter number to be edited using
controllers 98 and 99 or 100 and 101, and then ad-
justing the data value for that parameter using con-
troller number 6, 96, or 97.

Controller Numbers 121 through 127 are used to
implement the MIDI "Channel Mode Messages".
These messages are covered in the next section.

Channel Mode Messages

Channel Mode messages (MIDI controller num-
bers 121 through 127) affect the way a synthesizer
responds to MIDI data. Controller number 121 is
used to reset all controllers. Controller number 122
is used to enable or disable Local Control (In a
MIDI synthesizer which has it’s own keyboard, the
functions of the keyboard controller and the syn-
thesizer can be isolated by turning Local Control
off). Controller numbers 124 through 127 are used
to select between Omni Mode On or Off, and to se-
lect between the Mono Mode or Poly Mode of op-
eration.

When Omni mode is On, the synthesizer will re-
spond to incoming MIDI data on all channels.
When Omni mode is Off, the synthesizer will only
respond to MIDI messages on one channel. When
Poly mode is selected, incoming Note On messages
are played polyphonically. This means that when
multiple Note On messages are received, each note
is assigned its own voice (subject to the number of
voices available in the synthesizer). The result is
that multiple notes are played at the same time.
When Mono mode is selected, a single voice is as-
signed per MIDI channel. This means that only one
note can be played on a given channel at a given
time. Most modern MIDI synthesizers will default
to Omni On/Poly mode of operation. In this mode,
the synthesizer will play note messages received on
any MIDI channel, and notes received on each
channel are played polyphonically. In the Omni
Off/Poly mode of operation, the synthesizer will re-
ceive on a single channel and play the notes re-
ceived on this channel polyphonically. This mode
is useful when several synthesizers are daisy-
chained using MIDI THRU. In this case each syn-
thesizer in the chain can be set to play one part (the

AN27

AN27REV4 7

MIDI data on one channel), and ignore the infor-
mation related to the other parts.

Note that a MIDI instrument has one MIDI channel
which is designated as its "Basic Channel". The Ba-
sic Channel assignment may be hard-wired, or it
may be selectable. Mode messages can only be re-
ceived by an instrument on the Basic Channel.

System Common Messages

The System Common Messages which are current-
ly defined include MTC Quarter Frame, Song Se-
lect, Song Position Pointer, Tune Request, and End
Of Exclusive (EOX). The MTC Quarter Frame
message is part of the MIDI Time Code informa-
tion used for synchronization of MIDI equipment
and other equipment, such as audio or video tape
machines.

The Song Select message is used with MIDI equip-
ment, such as sequencers or drum machines, which
can store and recall a number of different songs.
The Song Position Pointer is used to set a sequenc-
er to start playback of a song at some point other
than at the beginning. The Song Position Pointer
value is related to the number of MIDI clocks
which would have elapsed between the beginning
of the song and the desired point in the song. This
message can only be used with equipment which
recognizes MIDI System Real Time Messages
(MIDI Sync).

The Tune Request message is generally used to re-
quest an analog synthesizer to retune its’ internal
oscillators. This message is generally not needed
with digital synthesizers.

The EOX message is used to flag the end of a Sys-
tem Exclusive message, which can include a vari-
able number of data bytes.

System Real Time Messages

The MIDI System Real Time messages are used to
synchronize all of the MIDI clock-based equipment
within a system, such as sequencers and drum ma-

chines. Most of the System Real Time messages
are normally ignored by keyboard instruments and
synthesizers. To help ensure accurate timing, Sys-
tem Real Time messages are given priority over
other messages, and these single-byte messages
may occur anywhere in the data stream (a Real
Time message may appear between the status byte
and data byte of some other MIDI message). The
System Real Time messages are the Timing Clock,
Start, Continue, Stop, Active Sensing, and the Sys-
tem Reset message. The Timing Clock message is
the master clock which sets the tempo for playback
of a sequence. The Timing Clock message is sent
24 times per quarter note. The Start, Continue, and
Stop messages are used to control playback of the
sequence.

The Active Sensing signal is used to help eliminate
"stuck notes" which may occur if a MIDI cable is
disconnected during playback of a MIDI sequence.
Without Active Sensing, if a cable is disconnected
during playback, then some notes may be left play-
ing indefinitely because they have been activated
by a Note On message, but will never receive the
Note Off. In transmitters which utilize Active Sens-
ing, the Active Sensing message is sent once every
300 ms by the transmitting device when this device
has no other MIDI data to send. If a receiver who is
monitoring Active Sensing does not receive any
type of MIDI messages for a period of time exceed-
ing 300 ms, the receiver may assume that the MIDI
cable has been disconnected, and it should there-
fore turn off all of its’ active notes. Use of Active
Sensing in MIDI transmitters and receivers is op-
tional.

The System Reset message, as the name implies, is
used to reset and initialize any equipment which re-
ceives the message. This message is generally not
sent automatically by transmitting devices, and
must be initiated manually by a user.

AN27

8 AN27REV4

System Exclusive Messages

System Exclusive messages may be used to send
data such as patch parameters or sample data be-
tween MIDI devices. Manufacturers of MIDI
equipment may define their own formats for Sys-
tem Exclusive data. Manufacturers are granted
unique identification (ID) numbers by the MMA or
the JMSC, and the manufacturer ID number is in-
cluded as the second byte of the System Exclusive
message. The manufacturers ID byte is followed by
any number of data bytes, and the data transmission
is terminated with the EOX message. Manufactur-
ers are required to publish the details of their Sys-
tem Exclusive data formats, and other
manufacturers may freely utilize these formats,
provided that they do not alter or utilize the format
in a way which conflicts with the original manufac-
turers specifications.

There is also a MIDI Sample Dump Standard,
which is a System Exclusive data format defined in
the MIDI specification for the transmission of sam-
ple data between MIDI devices.

Running Status

MIDI data is transmitted serially. Musical events
which originally occurred at the same time must be
sent one at a time in the MIDI data stream, and
therefore these events will not actually be played at
exactly the same time. However, the resulting de-
lays are generally short enough that the events are
perceived as having occurred simultaneously. The
MIDI data transmission rate is 31.35 kbit/s with
10 bits transmitted per byte of MIDI data. Thus, a
3 byte Note On or Note Off message takes about
1 ms to be sent. For a person playing a MIDI instru-
ment keyboard, the time skew between playback of
notes when 10 keys are pressed simultaneously
should not exceed 10 ms, and this would not be per-
ceptible. However, MIDI data being sent from a se-
quencer can include a number of different parts. On
a given beat, there may be a large number of musi-
cal events which should occur simultaneously, and

the delays introduced by serialization of this infor-
mation might be noticeable.

To help reduce the amount of data transmitted in
the MIDI data stream, a technique called "running
status" may be employed. It is very common for a
string of consecutive messages to be of the same
message type. For instance, when a chord is played
on a keyboard, 10 successive Note On messages
may be generated, followed by 10 Note Off mes-
sages. When running status is used, a status byte is
sent for a message only when the message is not of
the same type as the last message sent on the same
channel. The status byte for subsequent messages
of the same type may be omitted (only the data
bytes are sent for these subsequent messages). The
effectiveness of running status can be enhanced by
sending Note On messages with a velocity of zero
in place of Note Off messages. In this case, long
strings of Note On messages will often occur.
Changes in some of the the MIDI controllers or
movement of the pitch bend wheel on a musical in-
strument can produce a staggering number of MIDI
channel voice messages, and running status can
also help a great deal in these instances.

MIDI SEQUENCERS AND STANDARD
MIDI FILES

MIDI messages are received and processed by a
MIDI synthesizer in real time. When the synthesiz-
er receives a MIDI "note on" message it plays the
appropriate sound. When the corresponding "note
off" message is received, the synthesizer turns the
note off. If the source of the MIDI data is a musical
instrument keyboard, then this data is being gener-
ated in real time. When a key is pressed on the key-
board, a "note on" message is generated in real
time. In these real time applications, there is no
need for timing information to be sent along with
the MIDI messages. However, if the MIDI data is
to be stored as a data file, and/or edited using a se-
quencer, then some form of "time-stamping" for
the MIDI messages is required.

AN27

AN27REV4 9

The International MIDI Association publishes a
Standard MIDI Files specification, which provides
a standardized method for handling time-stamped
MIDI data. This standardized file format for time-
stamped MIDI data allows different applications,
such as sequencers, scoring packages, and multi-
media presentation software, to share MIDI data
files.

The specification for Standard MIDI Files defines
three formats for MIDI files. MIDI sequencers can
generally manage multiple MIDI data streams, or
"tracks". MIDI files having Format 0 must store all
of the MIDI sequence data on a single track. This is
generally useful only for simple "single track" de-
vices. Format 1 files, which are the most commonly
used, store data as a collection of tracks. Format 2
files can store several independent patterns.

SYNTHESIZER POLYPHONY AND
TIMBRES

The polyphony of a sound generator refers to its
ability to play more than one note at a time. Polyph-
ony is generally measured or specified as a number
of notes or voices. Most of the early music synthe-
sizers were monophonic, meaning that they could
only play one note at a time. If you pressed five
keys simultaneously on the keyboard of a mono-
phonic synthesizer, you would only hear one note.
Pressing five keys on the keyboard of a synthesizer
which was polyphonic with four voices of polyph-
ony would, in general, produce four notes. If the
keyboard had more voices (many modern sound
modules have 16, 24, or 32 note polyphony), then
you would hear all five of the notes.

The different sounds that a synthesizer or sound
generator can produce are often referred to as
"patches", "programs", "algorithms", sounds, or
"timbres". Modern synthesizers commonly use
program numbers to represent different sounds
they produce. Sounds may then be selected by
specifying the program numbers (or patch num-
bers) for the desired sound. For instance, a sound

module might use patch number 1 for its acoustic
piano sound, and patch number 36 for its fretless
bass sound. The association of patch numbers to
sounds is often referred to as a patch map. A MIDI
Program Change message is used to tell a device
receiving on a given channel to change the instru-
ment sound being used. For example, a sequencer
could set up devices on channel 4 to play fretless
bass sounds by sending a Program Change message
for channel four with a data byte value of 36 (this is
the General MIDI program number for the fretless
bass patch).

A synthesizer or sound generator is said to be
multi-timbral if it is capable of producing two or
more different instrument sounds simultaneously.
Again, if a synthesizer can play five notes simulta-
neously, then it is polyphonic. If it can produce a
piano sound and an acoustic bass sound at the same
time, then it is also multi-timbral. A synthesizer or
sound module which has 24 notes of polyphony
and which is 6 part multi-timbral (capable of pro-
ducing 6 different timbres simultaneously) could
synthesize the sound of a 6 piece band or orchestra.
A sequencer could send MIDI messages for a piano
part on channel 1, bass on channel 2, saxophone on
channel 3, drums on channel 10, etc. A 16 part
multi-timbral synthesizer could receive a different
part on each of MIDI’s 16 logical channels.

The polyphony of a multi-timbral synthesizer is
usually allocated dynamically among the different
parts (timbres) being used. In our example, at a giv-
en instant five voices might be used for the piano
part, two voices for the bass, one for the saxophone,
and 6 voices for the drums, leaving 10 voices free.
Note that some sounds utilize more than one voice,
so the number of notes which may be produced si-
multaneously may be less than the stated polypho-
ny of the synthesizer, depending on which sounds
are being utilized.

AN27

10 AN27REV4

THE GENERAL MIDI (GM) SYSTEM

At the beginning of a MIDI sequence, a Program
Change message is usually sent on each channel
used in the piece in order to set up the appropriate
instrument sound for each part. The Program
Change message tells the synthesizer which patch
number should be used for a particular MIDI chan-
nel. If the synthesizer receiving the MIDI sequence
uses the same patch map (the assignment of patch
numbers to sounds) that was used in the composi-
tion of the sequence, then the sounds will be as-
signed as intended. Unfortunately, prior to General
MIDI, there was no standard for the relationship of
patch numbers to specific sounds for synthesizers.
Thus, a MIDI sequence might produce different
sounds when played on different synthesizers, even
though the synthesizers had comparable types of
sounds. For example, if the composer had selected
patch number 5 for channel 1, intending this to be
an electric piano sound, but the synthesizer playing
the MIDI data had a tuba sound mapped at patch
number 5, then the notes intended for the piano
would be played on the tuba when using this syn-
thesizer (even though this synthesizer may have a
fine electric piano sound available at some other
patch number).

The General MIDI (GM) Specification, published
by the International MIDI Association, defines a
set of general capabilities for General MIDI Instru-
ments. The General MIDI Specification includes
the definition of a General MIDI Sound Set (a
patch map), a General MIDI Percussion map (map-
ping of percussion sounds to note numbers), and a
set of General MIDI Performance capabilities
(number of voices, types of MIDI messages recog-
nized, etc.). A MIDI sequence which has been gen-
erated for use on a General MIDI Instrument
should play correctly on any General MIDI synthe-
sizer or sound module.

The General MIDI system utilizes MIDI channels
1-9 and 11-16 for chromatic instrument sounds,

while channel number 10 is utilized for "key-
based" percussion sounds. The General MIDI
Sound set for channels 1-9 and 11-16 is given in
Table 1. These instrument sounds are grouped into
"sets" of related sounds. For example, program
numbers 1-8 are piano sounds, 6-16 are chromatic
percussion sounds, 17-24 are organ sounds, 25-32
are guitar sounds, etc.

For the instrument sounds on channels 1-9 and 11-
16, the note number in a Note On message is used
to select the pitch of the sound which will be
played. For example if the Vibraphone instrument
(program number 12) has been selected on channel
3, then playing note number 60 on channel 3 would
play the middle C note (this would be the default
note to pitch assignment on most instruments), and
note number 59 on channel 3 would play B below
middle C. Both notes would be played using the Vi-
braphone sound.

The General MIDI percussion map used for chan-
nel 10 is given in Table 2. For these "key-based"
sounds, the note number data in a Note On message
is used differently. Note numbers on channel 10 are
used to select which drum sound will be played.
For example, a Note On message on channel 10
with note number 60 will play a Hi Bongo drum
sound. Note number 59 on channel 10 will play the
Ride Cymbal 2 sound.

It should be noted that the General MIDI system
specifies sounds using program numbers 1 through
128. The MIDI Program Change message used to
select these sounds uses an 8-bit byte, which corre-
sponds to decimal numbering from 0 through 127,
to specify the desired program number. Thus, to se-
lect GM sound number 10, the Glockenspiel, the
Program Change message will have a data byte
with the decimal value 9.

The General MIDI system specifies which instru-
ment or sound corresponds with each pro-
gram/patch number, but General MIDI does not
specify how these sounds are produced. Thus, pro-

AN27

AN27REV4 11

Prog # Instrument Name Prog # Instrument Name Prog # Instrument Name
1 Acoustic Grand Piano 44 Contrabass 87 Lead 7 (fifths)
2 Bright Acoustic Piano 45 Tremolo Strings 88 Lead 8 (bass + lead)
3 Electric Grand Piano 46 Pizzicato Strings 89 Pad 1 (new age)
4 Honky-tonk Piano 47 Orchestral Harp 90 Pad 2 (warm)
5 Electric Piano 1 48 Timpani 91 Pad 3 (polysynth)
6 Electric Piano 2 49 String Ensemble 1 92 Pad 4 (choir)
7 Harpsichord 50 String Ensemble 2 93 Pad 5 (bowed)
8 Clavi 51 SynthStrings 1 94 Pad 6 (metallic)
9 Celesta 52 SynthStrings 2 95 Pad 7 (halo)
10 Glockenspiel 53 Choir Aahs 96 Pad 8 (sweep)
11 Music Box 54 Voice Oohs 97 FX 1 (rain)
12 Vibraphone 55 Synth Voice 98 FX 2 (soundtrack)
13 Marimba 56 Orchestra Hit 99 FX 3 (crystal)
14 Xylophone 57 Trumpet 100 FX 4 (atmosphere)
15 Tubular Bells 58 Trombone 101 FX 5 (brightness)
16 Dulcimer 59 Tuba 102 FX 6 (goblins)
17 Drawbar Organ 60 Muted Trumpet 103 FX 7 (echoes)
18 Percussive Organ 61 French Horn 104 FX 8 (sci-fi)
19 Rock Organ 62 Brass Section 105 Sita
20 Church Organ 63 SynthBrass 1 106 Banjo
21 Reed Organ 64 SynthBrass 2 107 Shamisen
22 Accordion 65 Soprano Sax 108 Koto
23 Harmonica 66 Alto Sax 109 Kalimba
24 Tango Accordion 67 Tenor Sax 110 Bag pipe
25 Acoustic Guitar (nylon) 68 Baritone Sax 111 Fiddle
26 Acoustic Guitar (steel) 69 Oboe 112 Shanai
27 Electric Guitar (jazz) 70 English Horn 113 Tinkle Bell
28 Electric Guitar (clean) 71 Bassoon 114 Agogo
29 Electric Guitar (muted) 72 Clarinet 115 Steel Drums
30 Overdriven Guitar 73 Piccolo 116 Woodblock
31 Distortion Guitar 74 Flute 117 Taiko Drum
32 Guitar harmonics 75 Recorder 118 Melodic Tom
33 Acoustic Bass 76 Pan Flute 119 Synth Drum
34 Electric Bass (finger) 77 Blown Bottle 120 Reverse Cymbal
35 Electric Bass (pick) 78 Shakuhachi 121 Guitar Fret Noise
36 Fretless Bass 79 Whistle 122 Breath Noise
37 Slap Bass 1 80 Ocarina 123 Seashore
38 Slap Bass 2 81 Lead 1 (square) 124 Bird Tweet
39 Synth Bass 1 82 Lead 2 (sawtooth) 125 Telephone Ring
40 Synth Bass 2 83 Lead 3 (calliope) 126 Helicopter
41 Violin 84 Lead 4 (chiff) 127 Applause
42 Viola 85 Lead 5 (charang) 128 Gunshot
43 Cello 86 Lead 6 (voice)

Table 1. General MIDI Sound Set (All Channels Except 10)

AN27

12 AN27REV4

gram number 1 should select the Acoustic Grand
Piano sound on any General MIDI instrument.
However, the Acoustic Grand Piano sound on two
General MIDI synthesizers which use different
synthesis techniques may sound quite different.

THE ROLAND GENERAL
SYNTHESIZER (GS) STANDARD

The Roland General Synthesizer (GS) functions are
a superset of those specified for General MIDI. The
GS system includes all of the GM sounds (which
are referred to as "capital instrument" sounds), and
adds new sounds which are organized as variations
of the capital instruments.

Variations are selected using the MIDI Control
Change message in conjunction with the Program
Change message. The Control Change message is
sent first, and it is used to set controller number 0
to some specified nonzero value indicating the de-
sired variation (some capital sounds have several
different variations). The Control Change message
is followed by a MIDI Program Change message

which indicates the program number of the related
capital instrument. For example, Capital instru-
ment number 25 is the Nylon String Guitar. The
Ukulele is a variation of this instrument. The Uku-
lele is selected by sending a Control Change mes-
sage which sets controller number 0 to a value of 8,
followed by a program change message on the
same channel which selects program number 25.
Sending the Program change message alone would
select the capital instrument, the Nylon String Gui-
tar. Note also that a Control Change of controller
number 0 to a value of 0 followed by a Program
Change message would also select the capital in-
strument.

The GS system also includes adjustable reverbera-
tion and chorus effects. The effects depth for both
reverb and chorus may be adjusted on an individual
MIDI channel basis using Control Change messag-
es. The type of reverb and chorus sounds employed
may also be selected using System Exclusive mes-
sages.

Note # Drum Sound Note # Drum Sound Note # Drum Sound
35 Acoustic Bass Drum 51 Ride Cymbal 1 67 High Agogo
36 Bass Drum 1 52 Chinese Cymbal 68 Low Agogo
37 Side Stick 53 Ride Bell 69 Cabasa
38 Acoustic Snare 54 Tambourine 70 Maracas
39 Hand Clap 55 Splash Cymbal 71 Short Whistle
40 Electric Snare 56 Cowbell 72 Long Whistle
41 Low Floor Tom 57 Crash Cymbal 2 73 Short Guiro
42 Closed Hi-Hat 58 Vibraslap 74 Long Guiro
43 High Floor Tom 59 Ride Cymbal 2 75 Claves
44 Pedal Hi-Hat 60 Hi Bongo 76 Hi Wood Block
45 Low Tom 61 Low Bongo 77 Low Wood Block
46 Open Hi-Hat 62 Mute Hi Conga 78 Mute Cuica
47 Low Mid Tom 63 Open Hi Conga 79 Open Cuica
48 Hi Mid Tom 64 Low Conga 80 Mute Triangle
49 Crash Cymbal 1 65 High Timbale 81 Open Triangle
50 High Tom 66 Low Timbale

Table 2. General MIDI Percussion Map (Channel 10)

AN27

AN27REV4 13

SYNTHESIZER IMPLEMENTATIONS:
FM VS. WAVETABLE

There are a number of different technologies or al-
gorithms used to create sounds in music synthesiz-
ers. Two widely used techniques are Frequency
Modulation (FM) synthesis and Wavetable synthe-
sis. FM synthesis techniques generally use one pe-
riodic signal (the modulator) to modulate the
frequency of another signal (the carrier). If the
modulating signal is in the audible range, then the
result will be a significant change in the timbre of
the carrier signal. Each FM voice requires a mini-
mum of two signal generators. These generators are
commonly referred to as "operators", and different
FM synthesis implementations have varying de-
grees of control over the operator parameters. So-
phisticated FM systems may use 4 or 6 operators
per voice, and the operators may have adjustable
envelopes which allow adjustment of the attack and
decay rates of the signal. Although FM systems
were implemented in the analog domain on early
synthesizer keyboards, modern FM synthesis im-
plementations are done digitally.

FM synthesis techniques are very useful for creat-
ing expressive new synthesized sounds. However,
if the goal of the synthesis system is to recreate the
sound of some existing instrument, this can gener-
ally be done more accurately with digital sample-
based techniques. Digital sampling systems store
high quality sound samples digitally, and then re-
play these sounds on demand. Digital sample-
based synthesis systems may employ a variety of
special techniques, such as sample looping, pitch
shifting, mathematical interpolation, and poly-
phonic digital filtering, in order to reduce the
amount of memory required to store the sound sam-
ples (or to get more types of sounds from a given
amount of memory). These sample-based synthesis
systems are often called "wavetable" synthesizers
(the sample memory in these systems contains a
large number of sampled sound segments, and can
be thought of as a "table" of sound waveforms

which may be looked up and utilized when need-
ed). A number of the special techniques employed
in this type of synthesis are discussed in the follow-
ing paragraphs.

WAVETABLE SYNTHESIS
TECHNIQUES

Looping and Envelope Generation

One of the primary techniques used in wavetable
synthesizers to conserve sample memory space is
the looping of sampled sound segments. For a large
number of instrument sounds, the sound can be
modeled as consisting of two major sections, the at-
tack section and the sustain section. The attack sec-
tion is the initial part of the sound, where the
amplitude and the spectral characteristics of the
sound may be changing very rapidly. The sustain
section of the sound is that part of the sound follow-
ing the attack, where the characteristics of the
sound are changing less dynamically. Figure 4
shows a waveform with portions which could be
considered the attack and the sustain sections indi-
cated. In this example, the spectral characteristics
of the waveform remain constant throughout the
sustain section, while the amplitude is decreasing at
a fairly constant rate. This is an exaggerated exam-
ple, in most natural instrument sounds, both the
spectral characteristics and the amplitude continue
to change through the duration of the sound. The
sustain section, if one can be identified, is that sec-
tion for which the characteristics of the sound are
relatively constant.

A great deal of memory can be saved in wave-table
synthesis systems by storing only a short segment
of the sustain section of the waveform, and then
looping this segment during playback. Figure 5
shows a two period segment of the sustain section
from the waveform in Figure 4, which has been
looped to create a steady state signal. If the original
sound had a fairly constant spectral content and
amplitude during the sustained section, then the
sound resulting from this looping operation should

AN27

14 AN27REV4

be a good approximation of the sustained section of
the original.

For many acoustic string instruments, the spectral
characteristics of the sound remain fairly constant
during the sustain section, while the amplitude of the
signal decays. This can be simulated with a looped
segment by multiplying the looped samples by a de-
creasing gain factor during playback to get the de-
sired shape or envelope. The amplitude envelope of
a sound is commonly modeled as consisting of some
number of linear segments. An example is the com-
monly used four part piecewise-linear Attack-De-
cay-Sustain-Release (ADSR) envelope model.
Figure 6 depicts a typical ADSR envelope shape,
and Figure 7 shows the result of applying this enve-
lope to the looped waveform from Figure 5.

A typical wavetable synthesis system would store
separate sample segments for the attack section and
the looped section of an instrument. These sample
segments might be referred to as the initial sound
and the loop sound. The initial sound is played once
through, and then the loop sound is played repeti-
tively until the note ends. An envelope generator
function is used to create an envelope which is ap-
propriate for the particular instrument, and this en-
velope is applied to the output samples during
playback. Playback of the initial wave (with the the
Attack portion of the envelope applied) begins
when a Note On message is received. The length of
the initial sound segment is fixed by the number of
samples in the segment, and the length of the At-
tack and Decay sections of the envelope are gener-

Figure 4. Attack and Sustain Portions of a waveform

Figure 5. Looping a Sound Segment

AN27

AN27REV4 15

ally also fixed for a given instrument sound. The
sustain section will continue to repeat the loop sam-
ples while applying the Sustain envelope slope
(which decays slowly in our examples), until a
Note Off message is applied. The Note Off mes-
sage triggers the beginning of the Release portion
of the envelope.

Loop Length

The loop length is measured as a number of sam-
ples, and the length of the loop should be equal to
an integral number of periods of the fundamental
pitch of the sound being played (if this is not true,
then an undesirable "pitch shift" will occur during
playback when the looping begins). Of course, the
length of the pitch period of a sampled instrument

sound will generally not work out to be an integral
number of sample periods. Therefore, it is common
to perform a "resampling" process on the original
sampled sound, to get new a new sound sample for
which the pitch period is an integral number of
sample periods.

In practice, the length of the loop segment for an
acoustic instrument sample may be many periods
with respect to the fundamental pitch of the sound.
If the sound has a natural vibrato or chorus effect,
then it is generally desirable to have the loop seg-
ment length be an integral multiple of the period of
the vibrato or chorus.

One-Shot Sounds

Figure 6. A Typical ADSR Amplitufe Envelope

Figure 7. ADSR Envelope Applied to Looped Sound Segment

AN27

16 AN27REV4

The previous paragraphs discussed dividing a sam-
pled sound into an attack section and a sustain sec-
tion, and then using looping techniques to
minimize the storage requirements for the sustain
portion. However, some sounds, particularly
sounds of short duration or sounds whose charac-
teristics change dynamically throughout their dura-
tion, are not suitable for looped playback
techniques. Short drum sounds often fit this de-
scription. These sounds are stored as a single sam-
ple segment which is played once through with no
looping. This class of sounds are referred to as
"one-shot" sounds.

Sample Editing and Processing

There are a number of sample editing and process-
ing steps involved in preparing sampled sounds for
use in a wave-table synthesis system. The require-
ments for editing the original sample data to identi-
fy and extract the initial and loop segments, and for
resampling the data to get a pitch period length
which is an integer multiple of the sampling period,
have already been mentioned.

Editing may also be required to make the endpoints
of the loop segment compatible. If the amplitude
and the slope of the waveform at the beginning of
the loop segment do not match those at the end of
the loop, then a repetitive "glitch" will be heard
during playback of the looped section. Additional
processing may be performed to "compress" the
dynamic range of the sound to improve the sig-
nal/quantizing noise ratio or to conserve sample
memory. This topic is addressed next.

When all of the sample processing has been com-
pleted, the resulting sampled sound segments for
the various instruments are tabulated to form the
sample memory for the synthesizer.

Sample Data Compression

The signal-to-quantizing noise ratio for a digitally
sampled signal is limited by sample word size (the
number of bits per sample), and by the amplitude of

the digitized signal. Most acoustic instrument
sounds reach their peak amplitude very quickly,
and the amplitude then slowly decays from this
peak. The ear’s sensitivity dynamically adjusts to
signal level. Even in systems utilizing a relatively
small sample word size, the quantizing noise level
is generally not perceptible when the signal is near
maximum amplitude. However, as the signal level
decays, the ear becomes more sensitive, and the
noise level will appear to increase. Of course, using
a larger word size will reduce the quantizing noise,
but there is a considerable price penalty paid if the
number of samples is large.

Compression techniques may be used to improve
the signal-to-quantizing noise ratio for some sam-
pled sounds. These techniques reduce the dynamic
range of the sound samples stored in the sample
memory. The sample data is decompressed during
playback to restore the dynamic range of the signal.
This allows the use of sample memory with a
smaller word size (smaller dynamic range) than is
utilized in the rest of the system. There are a num-
ber of different compression techniques which may
be used to compress the dynamic range of a signal.

For signals which begin at a high amplitude and de-
cay in a fairly linear fashion, a simple compression
technique can be effective. If the slope of the decay
envelope of the signal is estimated, then an enve-
lope with the complementary slope (the negative of
the decay slope) can be constructed and applied to
the original sample data. The resulting sample data,
which now has a flat envelope, can be stored in the
sample memory, utilizing the full dynamic range of
the memory. The decay envelope can then be ap-
plied to the stored sample data during sound play-
back to restore the envelope of the original sound.

Note that there is some compression effect inherent
in the looping techniques described earlier. If the
loop segment is stored at an amplitude level which
makes full use of the dynamic range available in
the sample memory, and the processor and D/A

AN27

AN27REV4 17

converters used for playback have a wider dynamic
range than the sample memory, then the application
of a decay envelope during playback will have a
decompression effect similar to that described in
the previous paragraph.

Pitch Shifting

In order to minimize sample memory requirements,
wavetable synthesis systems utilize pitch shifting,
or pitch transposition techniques, to generate a
number of different notes from a single sound sam-
ple of a given instrument. For example, if the sam-
ple memory contains a sample of a middle C note
on the acoustic piano, then this same sample data
could be used to generate the C# note or D note
above middle C using pitch shifting.

Pitch shifting is accomplished by accessing the
stored sample data at different rates during play-
back. For example, if a pointer is used to address
the sample memory for a sound, and the pointer is
incremented by one after each access, then the sam-
ples for this sound would be accessed sequentially,
resulting in some particular pitch. If the pointer in-
crement was two rather than one, then only every
second sample would be played, and the resulting
pitch would be shifted up by one octave (the fre-
quency would be doubled).

Frequency Accuracy

In the previous example, the sample memory ad-
dress pointer was incremented by an integer num-
ber of samples. This allows only a limited set of
pitch shifts. In a more general case, the memory
pointer would consist of an integer part and a frac-
tional part, and the increment value could be a frac-
tional number of samples. The integer part of the
address pointer is used to address the sample mem-
ory, the fractional part is used to maintain frequen-
cy accuracy. For example if the increment value
was equivalent to 1/2, then the pitch would be shift-
ed down by one octave (the frequency would be
halved). When non-integer increment values are

utilized, the frequency resolution for playback is
determined by the number of bits used to represent
the fractional part of the address pointer and the ad-
dress increment parameter.

Interpolation

When the fractional part of the address pointer is
non-zero, then the "desired value" falls between
available data samples. Figure 8 depicts a simpli-
fied addressing scheme wherein the Address Point-
er and the increment parameter each have a 4-bit
integer part and a 4-bit fractional part. In this case,
the increment value is equal to 1 1/2 samples. Very
simple systems might simply ignore the fractional
part of the address when determining the sample
value to be sent to the D/A converter. The data val-
ues sent to the D/A converter when using this ap-
proach are indicated in the Figure 8, case I. A
slightly better approach would be to use the nearest
available sample value. More sophisticated sys-
tems would perform some type of mathematical in-
terpolation between available data points in order
to get a value to be used for playback. Values which
might be sent to the D/A when interpolation is em-
ployed are shown as case II. Note that the overall
frequency accuracy would be the same for both
cases indicated, but the output is severely distorted
in the case where interpolation is not used.

There are a number of different algorithms used for
interpolation between sample values. The simplest
is linear interpolation. With linear interpolation, in-
terpolated value is simply the weighted average of
the two nearest samples, with the fractional address
used as a weighting constant. For example, if the
address pointer indicated an address of (n+K),
where n is the integer part of the address and K is
the fractional part, than the interpolated value can
be calculated as s(n+K) = (1-K)s(n) + (K)s(n+1),
where s(n) is the sample data value at address n.
More sophisticated interpolation techniques can
can be utilized to further reduce distortion, but
these techniques are computationally expensive.

AN27

18 AN27REV4

Oversampling

Oversampling of the sound samples may also be
used to improve distortion in wavetable synthesis
systems. For example, if 4X oversampling were
utilized for a particular instrument sound sample,
then an address increment value of 4 would be used
for playback with no pitch shift. The data points
chosen during playback will be closer to the "de-
sired values", on the average, than they would be if
no oversampling were utilized because of the in-
creased number of data points used to represent the
waveform. Of course, oversampling has a high cost
in terms of sample memory requirements.

In many cases, the best approach may be to utilize
linear interpolation combined with varying degrees
of oversampling where needed. The linear interpo-

lation technique provides reasonable accuracy for
many sounds, without the high penalty in terms of
processing power required for more sophisticated
interpolation methods. For those sounds which
need better accuracy, oversampling is employed.
With this approach, the additional memory re-
quired for oversampling is only utilized where it is
most needed. The combined effect of linear inter-
polation and selective oversampling can produce
excellent results.

Splits

When the pitch of a sampled sound is changed dur-
ing playback, the timbre of the sound is changed
somewhat also. For small changes in pitch (up to a
few semitones), the timbre change is generally not
noticed. However, if a large pitch shift is used, the

Figure 8. Sample Memory Addressing and Interpolation

AN27

AN27REV4 19

resulting note will sound unnatural. Thus, a partic-
ular sample of an instrument sound will be useful
for recreating a limited range of notes using pitch
shifting techniques. To get coverage of the entire
instrument range, a number of different samples of
the instrument are used, and each of these samples
is used to synthesize a limited range of notes. This
technique can be thought of as splitting a musical
instrument keyboard into a number of ranges of
notes, with a different sound sample used for each
range. Each of these ranges is referred to as a split,
or key split.

Velocity splits refer to the use of different samples
for different note velocities. Using velocity splits,
one sample might be utilized if a particular note is
played softly, where a different sample would be
utilized for the same note of the same instrument
when played with a higher velocity.

Note that the explanations above refer to the use of
key splits and velocity splits in the sound synthesis
process. In this case, the different splits utilize dif-
ferent samples of the same instrument sound. Key
splitting and velocity splitting techniques are also
utilized in a performance context. In the perfor-
mance context, different splits generally produce
different instrument sounds. For instance, a key-
board performer might want to set up a key split
which would play a fretless bass sound from the
lower octaves of his keyboard, while the upper oc-
taves play the vibraphone. Similarly, a velocity
split might be set up to play the acoustic piano
sound when keys are played with soft to moderate
velocity, but an orchestral string sound plays when
the keys are pressed with higher velocity.

Aliasing Noise

The previous paragraph discussed the timbre
changes which result from pitch shifting. The resa-
mpling techniques used to shift the pitch of a stored
sound sample can also result in the introduction of

aliasing noise into an instrument sound. The gener-
ation of aliasing noise can also limit the amount of
pitch shifting which may be effectively applied to a
sound sample. Sounds which are rich in upper har-
monic content will generally have more of a prob-
lem with aliasing noise. Low-pass filtering applied
after interpolation can help eliminate the undesir-
able effect of aliasing noise. The use of oversam-
pling also helps eliminate aliasing noise.

LFOs for vibrato and tremolo

Vibrato and tremolo are effects which are often
produced by musicians playing acoustic instru-
ments. Vibrato is basically a low-frequency modu-
lation of the pitch of a note, while tremolo is
modulation of the amplitude of the sound. These
effects are simulated in synthesizers by implement-
ing low-frequency oscillators (LFOs) which are
used to modulate the pitch or amplitude of the syn-
thesized sound being produced. Natural vibrato and
tremolo effects tend to increase in strength as a note
is sustained. This is accomplished in synthesizers
by applying an envelope generator to the LFO. For
example, a flute sound might have a tremolo effect
which begins at some point after the note has
sounded, and the tremolo effect gradually increases
to some maximum level, where it remains until the
note stops sounding.

Layering

Layering refers to a technique in which multiple
sounds are utilized for each note played. This tech-
nique can be used to generate very rich sounds, and
may also be useful for increasing the number of in-
strument patches which can be created from a lim-
ited sample set. Note that layered sounds generally
utilize more than one voice of polyphony for each
note played, and thus the number of voices avail-
able is effectively reduced when these sounds are
being used.

AN27

20 AN27REV4

Polyphonic Digital Filtering for Timbre
Enhancement

It was mentioned earlier that low-pass filtering may
be used to help eliminate noise which may be gen-
erated during the pitch shifting process. There are
also a number of ways in which digital filtering is
used in the timbre generation process to improve
the resulting instrument sound. In these applica-
tions, the digital filter implementation is polyphon-
ic, meaning that a separate filter is implemented for
each voice being generated, and the filter imple-
mentation should have dynamically adjustable cut-
off frequency and/or Q.

For many acoustic instruments, the character of the
tone which is produced changes dramatically as a
function of the amplitude level at which the instru-
ment is played. For example, the tone of an acous-
tic piano may be very bright when the instrument is
played forcefully, but much more mellow when it
is played softly. Velocity splits, which utilize dif-
ferent sample segments for different note veloci-
ties, can be implemented to simulate this
phenomena. Another very powerful technique is to
implement a digital low-pass filter for each note
with a cutoff frequency which varies as a function
of the note velocity. This polyphonic digital filter
dynamically adjusts the output frequency spectrum
of the synthesized sound as a function of note ve-
locity, allowing a very effective recreation of the
acoustic instrument timbre.

Another important application of polyphonic digi-
tal filtering is in smoothing out the transitions be-
tween samples in key-based splits. At the border
between two splits, there will be two adjacent notes
which are based on different samples. Normally,
one of these samples will have been pitch shifted
up to create the required note, while the other will
have been shifted down in pitch. As a result, the
timbre of these two adjacent notes may be signifi-
cantly different, making the split obvious. This
problem may be alleviated by employing a poly-

phonic digital filter which uses the note number to
control the filter characteristics. A table may be
constructed containing the filter characteristics for
each note number of a given instrument. The filter
characteristics are chosen to compensate for the
pitch shifting associated with the key splits used for
that instrument.

It is also common to control the characteristics of
the digital filter using an envelope generator or an
LFO. The result is an instrument timbre which has
a spectrum which changes as a function of time.
For example, It is often desirable to generate a tim-
bre which is very bright at the onset, but which
gradually becomes more mellow as the note de-
cays. This can easily be done using a polyphonic
digital filter which is controlled by an envelope
generator.

THE PC TO MIDI INTERFACE AND THE
MPU-401

To use MIDI with a personal computer, a PC to
MIDI interface product is generally required (there
are a few personal computers which come
equipped with built-in MIDI interfaces). There are
a number of MIDI interface products for PCs. The
most common types of MIDI interfaces for IBM
compatibles are add-in cards which plug into an ex-
pansion slot on the PC bus, but there are also serial
port MIDI interfaces (connects to a serial port on
the PC) and parallel port MIDI interfaces (connects
to the PC printer port). The fundamental function
of a MIDI interface for the PC is to convert parallel
data bytes from the PC data bus into the serial
MIDI data format and vice versa (a UART func-
tion). However, "smart" MIDI interfaces may pro-
vide a number of more sophisticated functions,
such as generation of MIDI timing data, MIDI data
buffering, MIDI message filtering, synchronization
to external tape machines, and more.

The defacto standard for MIDI interface add-in
cards for the PC is the Roland MPU-401 interface.
The MPU-401 is a smart MIDI interface, which

AN27

AN27REV4 21

also supports a dumb mode of operation (often re-
ferred to as "pass-through mode" or "UART
mode"). There are a number of MPU-401 compati-
ble MIDI interfaces on the market. In addition,
many add-in sound cards include built-in MIDI in-
terfaces which implement the UART mode func-
tions of the MPU-401.

COMPATIBILITY CONSIDERATIONS
FOR MIDI APPLICATIONS ON THE PC

There are two levels of compatibility which must
be considered for MIDI applications running on the
PC. First is the compatibility of the application
with the MIDI interface being used. The second is
the compatibility of the application with the MIDI
synthesizer. Compatibility considerations under
DOS and the Microsoft Windows operating system
are discussed in the following paragraphs.

DOS Applications

DOS applications which utilize MIDI synthesizers
include MIDI sequencing software, music scoring
applications, and a variety of games. In terms of
MIDI interface compatibility, virtually all of these
applications support the MPU-401 interface, and
most utilize only the UART mode. These applica-
tions should work correctly if the PC is equipped
with a MPU-401, a full-featured MPU-401 com-
patible, or a sound card with a MPU-401 UART-
mode capability. Other MIDI interfaces, such as se-
rial port or parallel port MIDI adapters, will only
work if the application provides support for that
particular model of MIDI interface.

A particular application may provide support for a
number of different models of synthesizers or
sound modules. Prior to the General MIDI stan-
dard, there was no widely accepted standard patch
set for synthesizers, so applications generally need-
ed to provide support for each of the most popular
synthesizers at the time. If the application did not
support the particular model of synthesizer or
sound module that was attached to the PC, then the

sounds produced by the application might not be
the sounds which were intended. Modern applica-
tions can provide support for a General MIDI (GM)
synthesizer, and any GM-compatible sound source
should produce the correct sounds. Some other
models which are commonly supported are the Ro-
land MT-32, the Roland LAPC-1, and the Roland
Sound Canvas. The Roland MT-32 was an external
MIDI sound module which utilized Roland’s Lin-
ear Additive (LA) synthesis, and the MT-32 com-
bined with an MPU-401 interface became a
popular MIDI synthesis platform for the PC. The
LAPC-1 was a PC add-in card which combined the
MT-32 synthesis function with the MPU-401 MIDI
interface. The Sound Canvas is Roland’s General
Synthesizer (GS) sound module, and this unit has
become an industry standard.

Microsoft Windows and the Multimedia PC
(MPC)

The number of applications for high quality audio
functions on the PC (including music synthesis)
grew explosively after the introduction of Mi-
crosoft Windows 3.0 with Multimedia Extensions
("Windows with Multimedia") in 1991. The Multi-
media PC (MPC) specification, originally pub-
lished by Microsoft in 1991 and now published by
the Multimedia PC Marketing Council (a subsid-
iary of the Software Publishers Association), spec-
ifies minimum requirements for multimedia-
capable Personal Computers. A system which
meets these requirements will be able to take full
advantage of Windows with Multimedia. Note that
many of the functions originally included in the
Multimedia Extensions have been incorporated
into the Windows 3.1 operating system.

The audio capabilities utilized by Windows 3.1 or
Windows with Multimedia include audio recording
and playback (linear PCM sampling), music syn-
thesis, and audio mixing. In order to support the re-
quired music synthesis functions, MPC-compliant

AN27

22 AN27REV4

audio adapter cards must have on-board music syn-
thesizers.

The MPC specification defines two types of syn-
thesizers; a "Base Multitimbral Synthesizer", and
an "Extended Multitimbral Synthesizer". Both the
Base and the Extended synthesizer must support
the General MIDI patch set. The difference be-
tween the Base and the Extended synthesizer re-
quirements is in the minimum number of notes of
polyphony, and the minimum number of simulta-
neous timbres which can be produced. Base Multi-
timbral Synthesizers must be capable of playing 6
"melodic notes" and "2 percussive" notes simulta-
neously, using 3 "melodic timbres" and 2 "percus-
sive timbres". The formal requirements for an
Extended Multitimbral Synthesizer are only that it
must have capabilities which exceed those speci-
fied for a Base Multitimbral Synthesizer. However,
the "goals" for an Extended synthesizer include the
ability to play 16 melodic notes and 8 percussive
notes simultaneously, using 9 melodic timbres and
8 percussive timbres.

The MPC specification also includes an authoring
standard for MIDI composition. This standard re-
quires that each MIDI file contain two arrange-
ments of the same song, one for Base synthesizers
and one for Extended synthesizers. The MIDI data
for the Base synthesizer arrangement is sent on
MIDI channels 13 - 16 (with the percussion track
on channel 16), and the Extended synthesizer ar-
rangement utilizes channels 1 - 10 (percussion is on
channel 10). This technique allows a single MIDI
file to play on either type of synthesizer.

Windows applications generally address hardware
devices such as MIDI interfaces or synthesizers
through the use of drivers. The drivers provide ap-
plications software with a common interface
through which hardware may be accessed, and this
simplifies the hardware compatibility issue. Before
a synthesizer is used, a suitable driver must be in-
stalled using the Windows Driver applet within the

Control Panel. The device drivers supplied with
Windows 3.1 include a driver for the MPU-
401/LAPC-1 MIDI interface, and a driver for the
original AdLib FM synthesizer card. Most other
MIDI interfaces and/or synthesizers are shipped
with their own Windows drivers.

When a MIDI interface or synthesizer is installed in
the PC and a suitable device driver has been loaded,
the Windows MIDI Mapper applet will appear
within the Control Panel. MIDI messages are sent
from an application to the MIDI Mapper, which
then routes the messages to the appropriate device
driver. The MIDI Mapper may be set to perform
some filtering or translations of the MIDI messages
in route from the application to the driver. The pro-
cessing to be performed by the MIDI Mapper is de-
fined in the MIDI Mapper Setups, Patch Maps, and
Key Maps.

MIDI Mapper Setups are used to assign MIDI
channels to device drivers. For instance, If you
have an MPU-401 interface with a General MIDI
synthesizer and you also have a Creative Labs
Soundblaster card in your system, you might wish
to assign channels 13 to 16 to the Ad Lib driver
(which will drive the Base-level FM synthesizer on
the Soundblaster), and assign channels 1 - 10 to the
MPU-401 driver. In this case, MPC compatible
MIDI files will play on both the General MIDI syn-
thesizer and the FM synthesizer at the same time.
The General MIDI synthesizer will play the Ex-
tended arrangement on MIDI channels 1 - 10, and
the FM synthesizer will play the Base arrangement
on channels 13-16. The MIDI Mapper Setups can
also be used to change the channel number of MIDI
messages. If you have MIDI files which were com-
posed for a General MIDI instrument, and you are
playing them on a Base Multitimbral Synthesizer,
you would probably want to take the MIDI percus-
sion data coming from your application on channel
10 and send this information to the device driver on
channel 16.

AN27

AN27REV4 23

The MIDI Mapper patch maps are used to translate
patch numbers when playing MPC or General
MIDI files on synthesizers which do not use the
General MIDI patch numbers. Patch maps can also
be used to play MIDI files which were arranged for
non-GM synthesizers on GM synthesizers. For ex-
ample, the Windows-supplied MT-32 patch map
can be used when playing GM-compatible .MID
files on the Roland MT-32 sound module or LAPC-
1 sound card.

The MIDI Mapper key maps perform a similar
function, translating the key numbers contained in
MIDI Note On and Note Off messages. This capa-
bility is useful for translating GM-compatible per-
cussion parts for playback on non-GM synthesizers
or vice-versa. The Windows-supplied MT-32 key
map changes the key-to-drum sound assignments
used for General MIDI to those used by the MT-32
and LAPC-1.

Some MIDI applications, such as MIDI sequencer
software packages, can be set to make use of the

MIDI Mapper, or to address the device driver di-
rectly (bypassing the MIDI Mapper). Other Win-
dows applications always utilize the MIDI Mapper.

SUMMARY

The MIDI protocol provides an efficient format for
conveying musical performance data, and the Stan-
dard MIDI Files specification ensures that different
applications can share time-stamped MIDI data.
The storage efficiency of the MIDI file format
makes MIDI an attractive vehicle for generation of
sounds in multimedia applications, computer
games, or high-end karaoke equipment. The Gener-
al MIDI system provides a common set of capabil-
ities and a common patch map for high polyphony,
multi-timbral synthesizers. General MIDI-compat-
ible Synthesizers employing high quality wavet-
able synthesis techniques provide an ideal MIDI
sound generation facility for multimedia applica-
tions.

