y 4 Y I17 J J /&
N 4 A Wy //
' 44y 4 a8/ / 4

AN194

Application Note

HOW TO PROGRAM THE HASH TABLE FILTER IN THE
CS8900A AND CS8920A

In some instances you may want to accept more
addresses than a single individual address.
Multicast addresses would be one use. You also
need to have additional addresses when doing
bridging functions.

Y ou can accept additional addresses using the Hash
Table Filter. The Hash Table Filter is a 64-bit
register where each bit corresponds to the hashed
value of an Ethernet address.

For example, you need to accept two individual
addresses. You program the first address into the
individual address register.

The second address requires a little more work.
First you run the address through the same hash
algorithm that the CS89xxA uses. Based on that
result you set the correct bit in the Hash Table
Filter.

Now you should know if thisisamulticast address
or just another individual address. If the additional
address is a multicast address, you set the
MulticastA bitinthe RXCTL register. If the address
is an individual address you set |AHash bit in the
RXCTL register.

IMPORTANT: Each bit in the Hash Table Filter

corresponds to many possible addresses. So, it is
possible that once you set theright bits the chip will

accept the frames you want and also frames you

don’'t want. This is because the some frames you
don’t want have addresses that hash to the same bit
as the address you want.

So, to ensure you only pass on the correct frames to
your operating system or program you have to do
an additional software check on the destination
address. You do this by keeping a list of additional
addresses in the software driver that you want to
accept. When a frame comes in and the IAHash or
Hashed status bits set in the Receive Event status
register then you look for a match in your list. If the
destination address has a match in your list then
you would pass that frame on. If there is no match
then it was just a random frame that happened to
match a bit you set in the Hash Table Filter. You
simply discard it.

Here is an algorithm that you can use to determine
which bit to set in the CS89xxA hash table to
receive a particular address

This algorithm can also be found by going to the
drivers page for the CS8900A and downloading
hash.zip.

== CIRRUS LOGIC"

P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com

Copyright O Cirrus Logic, Inc. 2000 OCT ‘00
(All Rights Reserved) AN194REV1
1

y 4 Y rI7 J J /A
F e AN194

#defi ne BYTE unsi gned char
#defi ne WORD i nt

#define DWORD int |ong

#i ncl ude <stdio. h>

BYTE Cal cul at eHashl ndex(BYTE *pMuil ti cast Addr) ;
voi d main();
voi d updatecrc(int bit);

int crc_poly[] ={2,1,1,0, 1,1,0,1,
1,0,1,1, 1,0,0,0,
1,0,0,0, 0,0,1,1,
0,0,1,0, 0,0,0,0
b
CRC 33] ;

void main ()

{

BYTE hash_i ndex;
BYTE nul ti cast addr[5];

/* just a made up address
0x4d in byte 0 should hash to bit 63
of hash filter.
Changing the first byte to 0x85 will
hash to bit 0 of the hash filter
*/

mul ticastaddr[0] = 0x4d;
mul ti castaddr[1] = 0x00;
mul ticastaddr[2] = 0x00;
mul ticastaddr[3] = 0x00;
mul ti castaddr[4] = 0x00;
mul ticastaddr[5] = 0x00;

hash_i ndex = Cal cul at eHashl ndex(mul ti castaddr);
printf("%l\ n", hash_i ndex);
(void) getchar();

2 AN194REV1

y 4 Y rI7 J J /A
F e AN194

}

/***~k******************************
*
*
Cal cul at eHashl ndex()
*

**/

BYTE Cal cul at eHashl ndex(BYTE *pMuil ti cast Addr)
{

BYTE Hashl ndex;

BYTE AddrByte;

i nt Byt e;

i nt Bit, j;

/* Prime the CRC */
for (j =0; j <32; j++) CRC]j] = 1;

/* For each of the six bytes of the nulticast address */
for (Byte=0; Byte<6; Byte++)

{
/*
printf("\n%.2x", *pMilticastAddr);
(void) getchar();
*/
Addr Byt e = *pMil ti cast Addr ++;
/* For each bit of the byte */
for (Bit=0; Bit<8; Bit++)
{
updatecrc((AddrByte >> Bit) & 1);
}
}

/* Take the least significant six bits of the CRC and copy them */
/* to the Hashlndex in reverse order. */
Hashl ndex = 0;
for(Bit=0, Hashl ndex=0; Bit<6; Bit++)
{

Hashl ndex = (Hashlndex << 1) + CR(/Bit];

AN194REV1 3

y 4 Y rI7 J J /A
F e AN194

}

return Hashl ndex;
} /* end of Cal cul at eHashl ndex() */

voi d updatecrc(int bit)

{
int j;
/* >> 1 the crc, use high bit (now CRC[32]) as control bit */
for (j =32, j >0; j--) CRAj] = CRCj - 1];
CRC[0] = O;
/* if bit ~ (control bit) =1, set CRC = CRC " pol ynom al */
if (bit ~ CRC32])
{
for (j =0; j <32 j++)
{
CRC[j] 7= crc_poly[j];
}
}
}

4 AN194REV1

y 4 Y Ir1J JZ J [&
F e AN194

Hereisasamplelist of addresses and the corresponding hash bit. Thisis only a sample -- many addresses

can hash to a particular bit.

Hash Hash
Table Table
Address Filter Bit Address Filter Bit
85 00 00 00 00 00 0 21 00 00 00 00 00 32
A5 00 00 00 00 00 1 01 00 00 00 00 00 33
E5 00 00 00 00 00 2 41 00 00 00 00 00 34
C5 00 00 00 00 00 3 71 00 00 00 00 00 35
45 00 00 00 00 00 4 E1 00 00 00 00 00 36
65 00 00 00 00 00 5 C1 00 00 000000 37
2500 00 00 00 00 6 81 00 00 00 00 00 38
05 00 00 00 00 00 7 A1 00 00 00 00 00 39
2B 00 00 00 00 00 8 8F 00 00 00 00 00 40
0B 00 00 00 00 00 9 BF 00 00 00 00 00 41
4B 00 00 00 00 00 10 EF 00 00 00 00 00 42
6B 00 00 00 00 00 11 CF 00 00 00 00 00 43
EB 00 00 00 00 00 12 4F 00 00 00 00 00 44
CB 00 00 00 00 00 13 6F 00 00 00 00 00 45
8B 00 00 00 00 00 14 2F 00 00 00 00 00 46
BB 00 00 00 00 00 15 OF 00 00 00 00 00 47
C7 00 00 00 00 00 16 63 00 00 00 00 00 48
E7 00 00 00 00 00 17 43 00 00 00 00 00 49
A7 00 00 00 00 00 18 03 00 00 00 00 00 50
87 00 00 00 00 00 19 23 00 00 00 00 00 51
07 00 00 00 00 00 20 A3 00 00 00 00 00 52
27 00 00 00 00 00 21 83 00 00 00 00 00 53
67 00 00 00 00 00 22 C3 00 00 000000 54
47 00 00 00 00 00 23 E3 00 00 00 00 00 55
69 00 00 00 00 00 24 CD 00 00 00 00 00 56
49 00 00 00 00 00 25 ED 00 00 00 00 00 57
09 00 00 00 00 00 26 AD 00 00 00 00 00 58
29 00 00 00 00 00 27 8D 00 00 00 00 00 59
A9 00 00 00 00 00 28 0D 00 00 00 00 00 60
89 00 00 00 00 00 29 2D 00 00 00 00 00 61
C9 00 00 00 00 00 30 6D 00 00 00 00 00 62
E9 00 00 00 00 00 31 4D 00 00 00 00 00 63

AN194REV1

