
Copyright  Cirrus Logic, Inc. 200
(All Rights Reserved)

P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com
AN183
Application Note
WRITING INTERRUPTS USING THE ANGEL DEBUGGER

Note: Cirrus Logic assumes no responsibility for the attached information which is
provided “AS IS” without warranty of any kind (expressed or implied).
1

0 AUG ‘00
AN183REV1

AN183

r-

r

e

d

sk

s.
ge

nd
1. INTRODUCTION

This application note explains how to install a
interrupt service routine (ISR) in the Angel
debugging environment. This application note
assumes you are using a Cirrus Logic 72xx
development board that is running Angel,
Version 1.20, and the ARM® Tools, Version 2.5.

The ARM project file (LED_ISR.APJ) and two
source files (ISRSHELL.S and LED_ISR.C) are
the example files for this application note. Treat the
source code in the example files as an important
reference source for understanding the concepts
presented in this application note.

2. BACKGROUND

There are two traditional methods for installing an
interrupt service routine:

n Application software installs the ISR

n Use Angel Debugger to Install ISR

2.1 Method One: Application Software
Implementation of ISR

The first method assumes that the interrupt vectors
reside in RAM starting at location 0x0. In this
case, the application software saves off the existing
interrupt vector and replaces it with a branch to the
new ISR. The new ISR then exits by chaining to the
previous ISR. This approach is explained in detail
in the Chapter 9 of the ARM Software Development
Toolkit User Guide.

This method is useful when Angel is compiled to
run entirely in upper memory and RAM exists at
the bottom of memory where the exception vectors
reside (including IRQ). This method can also be
used if you are using a JTAG-based debugger (such
as Multi-ICE™, JEENI™, or Wiggler) and have
programmed the Memory Management Unit
(MMU) to map DRAM to the first 16M bytes of
memory (see the application note, AN177, Using
JTAG for Debugging EP72xx Microcontrollers).

2.2 Method Two: Use Angel Functionality

The Angel debug monitor resides in ROM
(FLASH) memory starting at 0x0. Angel is used to
call a function to install, save, and restore the
existing ISR vectors.

These functions are typical of a BIOS or an
operating system, and are also found in target
debuggers such as Angel. The Angel debugger
contains two special SWI (software interrupt) calls
that allow for the installation of an ISR. This is
done using the Angel semi-hosting SWI (by default
this is 0x123456 in ARM state).

3. SOFTWARE

The example program installs an interrupt that
flashes the heartbeat LED once a second. It also
uses the printf semi-hosting functions of Angel to
print the status to the console screen. The C code
defines two special Angel SWI’s:

n Angel_GetIRQ, which gets the existing inte
rupt vector

n Angel_SetIRQ, which installs the location fo
the new ISR

The procedure for installing the ISR follows thes
steps:

1) Get the old vector using Angel_GetIREQ, an
stash it away in a global location.

2) Install the ISR routine vector by calling
Angel_SetIRQ.

3) Program the peripherals and the interrupt ma
registers.

4. SAMPLE EXERCISE

Change the interrupt rate from 1 second to 10m
(Hint: See source code comments.) Then chan
the program so that the LED blinks at 1 seco
intervals. (Hint: you will need to modify the
interrupt routine to blink only on every 100th

occurrence.)
2 AN183REV1

• Notes •

