
Copyright Cirrus Logic, Inc. 200
(All Rights Reserved)

P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com
AN182
Application Note
WRITING CODE FOR ROM

Note: Cirrus Logic assumes no responsibility for the attached information which
is provided “AS IS” without warranty of any kind (expressed or implied).
1

0 SEP ‘00
AN182REV2

AN182

TABLE OF CONTENTS
1. INTRODUCTION ... 3
2. THE STEPS TO BUILD A ROM ... 3
3. DEBUGGING AN INTERRUPT .. 3
4. SOFTWARE EXAMPLE #1 .. 4
5. SOFTWARE EXAMPLE #2 .. 5
6. CONCLUSION .. 5
7. ALTERNATE MEMORY MAP .. 6
8. LISTING OF LINKER SYMBOL TABLE OUTPUT FOR SOFTWARE EXAMPLE # 1 7

8.1 Summary of Memory Used .. 8
8.2 Description of Results for Software Example #1 .. 8

9. LISTING OF LINKER SYMBOL TABLE OUTPUT FOR SOFTWARE EXAMPLE # 2 9
9.1 Summary of Memory Used .. 10
9.2 Description of Results for Software Example #2 .. 10

LIST OF TABLES
Table 1. EP72xx/71xx in External Boot Mode Memory Map for Example #1.................................. 4
Table 2. MMU Virtual Address Space ... 5
Table 3. mmu_alt.s Memory Map.. 6
Table 4. Symbol Table for Software Example #1 .. 7
Table 5. Software Example #1 Memory Use... 8
Table 6. Characteristics of Example #1... 8
Table 7. Symbol Table for Software Example #2 .. 9
Table 8. Software Example #2 Memory Use... 10
Table 9. Characteristics of Example #2... 10

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any
kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third
parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publi-
cation may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise)
without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic web site or disk may be printed for use by the user. However, no part of the
printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photo-
graphic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or
sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in
this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.
2 AN182REV2

AN182

1. INTRODUCTION

This application note will cover the steps required
to build a binary image that can be loaded into
FLASH memory for stand-alone, self-running
applications. There are two examples provided.
Each example includes the initialization code and a
main C routine that also contains an interrupt
service routine that was also written in C. The
linker output is listed to illustrate how memory is
allocated for these examples. Both examples use
the internal SRAM for stack and data storage. The
DRAM’s are not used.

This application note assumes you are using the
ARM® Tools, Version 2.5x. The concepts
presented should be valid for other software
development environments with some minor
modifications. This application note should also
include the project and source files for the
examples.

2. THE STEPS TO BUILD A ROM

Follow these steps to build a ROM:

1) Determine your memory layout.

2) Write the C code

3) Link with an initialization program (such as
init.s) that

a) Sets up the processor mode

b) Defines the stack area

c) Performs some hardware initialization

d) Loads the MMU tables and enable the
MMU (if necessary)

e) Defines entry points for your interrupt
service routine and main C entry point

4) Set the Read-Only value to 0x0000 in the Link-
er. Set the Read-Write area to the first RAM lo-
cation.

5) Edit the Project Template (Edit→Project Tem-
plate) and double-click on Link. Add the fol-
lowing in the Command Line window:

<fromelf> -nozeropad <$pro-
jectname>.axf -bin <$project-
name>.rom.

This action invokes the fromelf program
which converts the ARM ELF file to a true bi-
nary file. This also creates a file with the
.ROM extension which is the file that is pro-
grammed into flash.

6) Download the .ROM binary image to the system
using the DOWNLOAD.EXE program.

It is a good idea to carefully look at the settings in
the project files that are referenced in this
Application Note to fully comprehend the
procedure.

When the examples are compiled and downloaded
correctly, the heartbeat LED will flash once a
second for five times then enter the standby state.
Pressing the WAKEUP button starts the processor
and flashes the LED five more times, and then goes
to standby. This continues forever.

3. DEBUGGING AN INTERRUPT

Debugging an interrupt is a bit tricky. In both the
ARMulator and in Angel, an interrupt can be
simulated by doing the following in the debugger:

1) Enable Interleaving View in the Execution
Window (this displays the actual assembly
code) and addresses. Use Ctrl-I or
Options→Toggle Interleaving.

2) In the register window, change psr to
%xxxxxxx_IRQ32 (don’t change the current
settings of xxxxxxxx).

3) Change spur to%xxxxxx_SVC32 (otherwise,
won’t return in Supervisor Mode).

4) Set r14 (the link register) to current value +4

5) Set PC to 0x18 (the IRQ vector)

Now you can single step through the handler and
upon exiting, the original state will be restored.
AN182REV2 3

AN182

4. SOFTWARE EXAMPLE #1

This first software example does not use the MMU.
This results in a program with a very small
footprint (<1 kByte). Adding an MMU does
improve performance but adds an additional 16 K
or more of program space to hold the Translation
Tables. Without invoking the MMU, the memory
map of a 72xx embedded controller in External
Boot Mode is shown in Table 1.

The project file for this example is called
ROMCode.apj. This project file has two variants:
Debug and ROM. The debug variant allows you to
simulate the code in the ARMulator. The ROM
variant builds the ROM image. The C code

example is called C_ROM.C. This routine defines
some "do-nothing" memory, checks that the RAM
memory allocated in an array is valid, enables a
timer interrupt, then loops forever. The interrupt
handler routine simply toggles the state of the
heartbeat LED each time the interrupt is called. The
program init.s is an assembly routine that sets up
the processor mode, defines the stack area, sets the
ZI (zero initialized RAM area) to zero, and defines
the calling procedure for the interrupt service C
routine and the main C routine.

The Linker symbol output is shown in Listing 1.
Comments are placed along side the output to
clarify the meanings.

Address Contents Size

0xF000.0000 Reserved 256 Mbytes

0xE000.0000 Reserved 256 Mbytes

0xD000.0000 DRAM Bank 1 256 Mbytes

0xC800.0000
0xC000.0000

16MB DRAM, Bank 0
16MB DRAM, Bank 0

256 Mbytes

0x8000.4000 Unused ~ 1 Gbyte

0x8000.0000 Internal Registers 16K bytes

0x7000.0000 Boot ROM (nCS7) 128 bytes

0x6000.0000 On-chip SRAM (nCS6) 38,400 (0x9600) bytes

0x5000.0000 Expansion--Evaluation Board Peripherals (nCS5) 4 x 64 Mbytes

0x4000.0000 Expansion--Evaluation Board Peripherals (nCS4) 4 x 64 Mbytes

0x3000.0000 Expansion--Evaluation Board Peripherals (nCS3) 256 Mbytes

0x2000.0000 Expansion--Evaluation Board Peripherals (nCS2) 256 Mbytes

0x1000:0000 NAND Flash ROM Bank 1 (nCS1) 256 Mbytes

0x0000:0000 NAND Flash ROM Bank 0 (nCS0) 256 Mbytes

Table 1. EP72xx/71xx in External Boot Mode Memory Map for Example #1
4 AN182REV2

AN182

a or

as

in

ht
M

st
but

the
y
de
 to
n

hat

g

5. SOFTWARE EXAMPLE #2

This next software example is identical to the
previous example except that the MMU is enabled.
This requires that the source listing, mmu.s, be
included in the project file. It also requires that the
compiler flag “MMU_enabled” be defined. This is
accomplished in the project options rather than in
the source code. This allows one set of C and
assembly source to be maintained.

The project file for this example is called
ROM_CMMU.APJ. The file that defines the
memory configuration is called “mmu.s.” It will
define a memory map as shown in Table 2. Note
that only 1 Mb is defined. This is about as small a
configuration possible. Only one Level 1 item is
needed. But since Level 1 data must be aligned on
a 14-bit address, this sets the minimum size of the
ROM image to 16K plus the size of the Level I
table (1 word, or 4 bytes, in this example). The
Level II tables resided on a 10-bit aligned (4 K)
boundary. So there exists substantial “empty”
space in the ROM image. With careful design,

these unused regions could contain constant dat
code.

The MMU defines the virtual address space
described in Table 2.

The Linker output with explanations is shown
Section 7.

6. CONCLUSION

This application note explains how one mig
design and build code that can be placed into RO
(or FLASH). Two examples were used. The fir
generated code that was 440 bytes in length
does not take advantage of the MMU.

The second example is the same code but with
MMU enabled and a minimal virtual memor
configuration was established. The size of the co
in this case, is larger (16,412 bytes). This is due
the restrictions on where the Level I Translatio
Program resides. It is generally recommended t
the MMU be enabled as this also enables the cache
that maximizes performance in more demandin
applications, such as MP3 decoding.

Address Range Function

0x0002C000 - 0x0002FFFF EP7209 internal registers

0x0002B000 - 0x0002BFFF Parallel port interface (nCS1)

0x0002A000 - 0x0002AFFF NAND FLASH interface (nCS1)

0x00020000 - 0x00029FFF 40K of internal SRAM (only 37.5K exists)

0x00000000 - 0x0001FFFF 128K of program ROM (nCS0)

Table 2. MMU Virtual Address Space
AN182REV2 5

AN182

ze
e
of
f
he
ge
es.
7. ALTERNATE MEMORY MAP

The file mmu_alt.s offers an alternative memory
map that does not use a Level 2 translation table.
This avoids the code at 0x0400 which lies between
the code and the Level 1 table at 0x4000. In most
embedded cases where an operating system such as
Linux or Windows® CE is not required, you don’t
need to worry about Level 2 at all. Using
mmu_alt.s, the memory map in Table 3 is
defined:

Note how compact this memory model is. The si
of the Translation table is relatively small sinc
there are few entries to define the first 5 Mb
memory (five Level 1 entries for a total o
20 bytes). As an exercise, try using this with t
example program. Just make certain you chan
the code to reflect the different memory address

Address Range Purpose

0x0050.0000 0xFFFF.FFFF Undefined. Accesses generate Data Abort

0x0040.0000 0x004F.FFFF USB interface (nCS4)

0x0030.0000 0x003F.FFFF NAND FLASH interface (nCS1)

0x0020.0000 0x002F.FFFF EP7209 internal registers

0x0010.0000 0x001F.FFF 1Mb Internal SRAM (only 38.4K exists)

0x0000.0000 0x000F.FFFF 1Mb of program ROM (nCS0)

Table 3. mmu_alt.s Memory Map
6 AN182REV2

AN182

8. LISTING OF LINKER SYMBOL TABLE OUTPUT FOR SOFTWARE EXAMPLE # 1

The following information is a formatted version of the output produced by Software Example #1. The
symbol table for Software Example #1 is shown in Table 4.

Linker Output Units Explanation

C$$code$$Base 000000 This is the starting location. Defined in Linker Read-Only

C$$code$$Limit 000224 Size of the C program.

CStack$$zidata$$Base 60000108 Beginning of zero-initialized RAM. Includes area for stack.

CStack$$zidata$$Limit 60000608 Top of Stack

C$$code 000000 Defined in init.s

InterruptHandler 0000ec Location of InterruptHandler C routine

Image$$RO$$Limit 000238 Total size of ROM image

Image$$RW$$Base 60000000 Start of RAM. Defined in Linker Read-Write

Image$$ZI$$Base 60000008 Start of zero-initialized RAM (heap)

Image$$RW$$Limit 60000608 End of RAM used. Includes stack

C_entry 000148 Location of main C routine

CStack$$zidata 60000108 Bottom of stack

C$$constdata$$Base 000224 Start of storage for constant values such as “hex”

C$$constdata$$Limit 000138 End of constant storage

C$$data$$Base 60000000 Start location for C data storage. This is the static int “temp”
which is 4 bytes in length

C$$data$$Limit 60000008 End of data. Only “temp” was declared.

C$$zidata$$Base 60000008 Start of the heap area used in the example, char array[256]

C$$zidata$$Limit 60000108 End of heap, 256 bytes.

hex 000224 Location where the const hex value is stored. It is stored at the
end of the image. Adding 0x14 (20) gives a total of 0x1bc
(same as Image$$RO$$Limit) and is the total size of the
binary image (444 bytes)

j 60000000 Location of the volatile global variable “j”

Array 60000008 Location for start of array

Image$$RO$$Base 000000 Beginning address of the ROM image

Image$$ZI$$Limit 60000608 Size of RAM used.

Table 4. Symbol Table for Software Example #1
AN182REV2 7

AN182

8.1 Summary of Memory Used

A summary of memory used in Software Example #1 is shown in Table 5:

8.2 Description of Results for Software Example #1

Image entry point: 0

Entry area: "C$$code" from object file init.o

Code
Size

Inline
Data

Inline
Strings

“const”
data

RW
Data

0-Init
Data

Debug
Data

Object
Totals

512 36 0 20 8 1536 0

Table 6. Characteristics of Example #1

Base Size Type Read Only (RO) /
Read Write (RW)

Name

0 ec CODE RO C$$code from object file init.o

ec 138 CODE RO C$$code from object file C_ROM.o

224 14 DATA RO C$$constdata from object file C_ROM.o

60000000 8 DATA RW C$$data from object file C_ROM.o

60000008 100 ZERO RW C$$zidata from object file C_ROM.o

60000108 500 ZERO RW CStack$$zidata from object file init.o

Table 5. Software Example #1 Memory Use
8 AN182REV2

AN182

9. LISTING OF LINKER SYMBOL TABLE OUTPUT FOR SOFTWARE EXAMPLE # 2

The following information in this section is a formatted version of the output produced by Software
Example #2.

Linker Output Units Explanation

Assembly$$PageTable$$Base 004000 This is the location for the first item in the Level 1 Translation
Table

Assembly$$PageTable$$Limit 000668 Size of Level 1 Table

Assembly$$PageTable 000400 This is the location of the first item in the Level II Translation
Table.

C$$code$$Base 000000 Start location

C$$code$$Limit 000258 Size of code

CStack$$zidata$$Base 020008 Start of ZI data in RAM

CStack$$zidata$$Limit 020108 Upper limit of ZI data in RAM

C$$code 000000 Defined in init.s

InterruptHandler 000120 Location of InterruptHandler C routine

Image$$RO$$Limit 004018 Total size of ROM image

Image$$RW$$Base 020000 Start of RAM. Defined in Linker Read-Write

Image$$ZI$$Base 020008 Start of zero-initialized RAM (heap)

Image$$RW$$Limit 020608 End of RAM used. Includes stack

C_entry 00017c Location of main C routine

CStack$$zidata 020108 Bottom of stack

C$$constdata$$Base 004004 Start of storage for constant values such as “hex”

C$$constdata$$Limit 004018 End of constant storage. Size is 0x14 or 20.

C$$data$$Base 020000 Start location for C data storage. This is the static int “temp”
and volatile j, both of which are 4 bytes in length

C$$data$$Limit 020008 End of data. 8 bytes for two values.

C$$zidata$$Base 020008 Start of the heap area used in the example, char array[256]

C$$zidata$$Limit 020108 End of heap, 256 bytes.

j 020000 Location of volatile variable j

Table 7. Symbol Table for Software Example #2
AN182REV2 9

AN182

9.1 Summary of Memory Used

A summary of memory used in Software Example #2 is found in Table 8.

9.2 Description of Results for Software Example #2

The characteristics of Software Example 2 are described in Table 9.

Image entry point: 0

Entry area: "C$$code" from object file init.o:

hex 004004 Location where the const hex value is stored. Note that it
appears after the Level I entry. Adding 20 to 0x4004 gives
0x401C (16,412) which is the size of the binary image.

Array 020008 Location for start of array

Image$$RO$$Base 000000 Beginning address of the ROM image

Image$$ZI$$Limit 020608 Size of RAM used.

Table 7. Symbol Table for Software Example #2 (Continued)

Base Size Type Read Only (RO) /
Read Write (RW)

Name

0 120 CODE RO C$$code from object file init.o

120 138 CODE RO C$$code from object file C_ROM.o

258 1a8 PAD RO Assembly$$PageTable from object file
Mmu.o

400 c0 DATA RO Assembly$$PageTable from object file
Mmu.o

4c0 3b40 PAD RO Assembly$$PageTable_ from object file
Mmu.o

4000 4 DATA RO Assembly$$PageTable_ from object file
Mmu.o

4004 14 DATA RO C$$constdata from object file C_ROM.o

20000 4 DATA RW C$$data from object file C_ROM.o

20004 100 ZERO RW C$$zidata from object file C_ROM.o

20104 500 ZERO RW CStack$$zidata from object file init.o

Table 8. Software Example #2 Memory Use

Code
Size

Inline
Data

Inline
Strings

“const”
data

RW
Data

0-Init
Data

Debug
Data

Object
Totals

556 44 0 216 8 1536 0

Table 9. Characteristics of Example #2
10 AN182REV2

• Notes •

