

3.3V, 256 Kbit (32 Kbit x 8) ZEROPOWER® SRAM

PRELIMINARY DATA

FEATURES SUMMARY

- INTEGRATED, ULTRA LOW POWER SRAM, and POWER-FAIL CONTROL CIRCUIT
- READ CYCLE TIME EQUALS WRITE CYCLE TIME
- AUTOMATIC POWER-FAIL CHIP DESELECT and WRITE PROTECTION
- WRITE PROTECT VOLTAGES: (V_{PFD} = Power-fail Deselect Voltage)
 M48Z32V: V_{CC} = 3.0 to 3.6V; 2.7V ≤ V_{PFD} ≤ 3.0V
- ULTRA-LOW STANDBY CURRENT

Figure 1. Logic Diagram

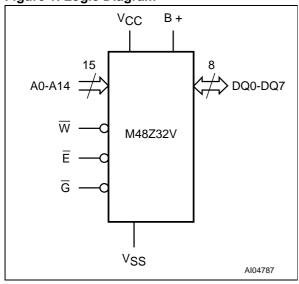
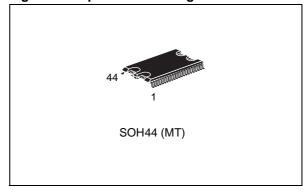



Figure 2. 44-pin SOIC Package

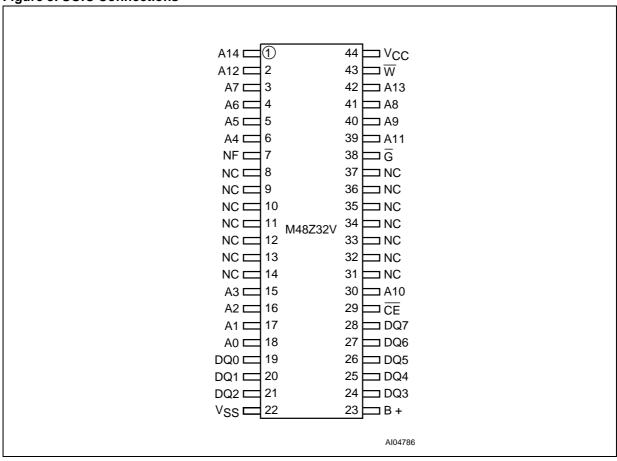
Table 1. Signal Names

A0-A14	Address Inputs		
DQ0-DQ7	Data Inputs / Outputs		
Ē	Chip Enable Input		
G	Output Enable Input		
W	WRITE Enable Input		
V _{CC}	Supply Voltage		
V _{SS}	Ground		
B +	Positive Battery Pin		
NC	Not Connected		

May 2002 1/16

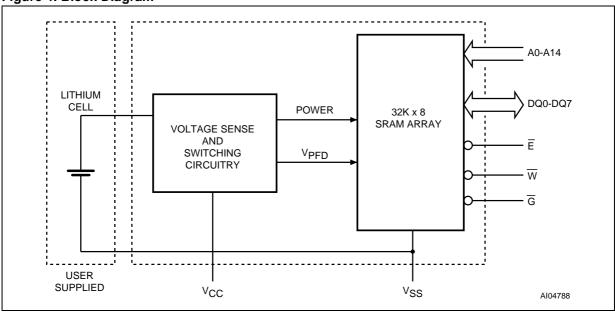
M48Z32V

TABLE OF CONTENTS


DESCRIPTION3
SOIC Connections (Figure 3.)
Block Diagram (Figure 4.)
MAXIMUM RATING4
Absolute Maximum Ratings (Table 2.)
DC AND AC PARAMETERS5
Operating and AC Measurement Conditions (Table 3.)
AC Measurement Load Circuit (Figure 5.)5
Capacitance (Table 4.)
DC Characteristics (Table 5.)
OPERATING MODES
Operating Modes (Table 6.)
READ Mode7
READ Mode AC Waveforms (Figure 6.)
READ Mode AC Characteristics (Table 7.)
WRITE Mode9
WRITE Enable Controlled, WRITE Mode AC Waveforms (Figure 7.)9
Chip Enable Controlled, WRITE Mode AC Waveforms (Figure 8.)
WRITE Mode AC Characteristics (Table 8.)
Data Retention Mode
Power Down/Up Mode AC Waveforms (Figure 9.)
Power Down/Up AC Characteristics (Table 9.)
Power Down/Up Trip Points DC Characteristics (Table 10.)
V _{CC} Noise And Negative Going Transients
Supply Voltage Protection (Figure 10.)
PART NUMBERING
PACKAGE MECHANICAL INFORMATION
REVISION HISTORY

DESCRIPTION

The M48Z32V ZEROPOWER[®] RAM is a 32 Kbit x 8, non-volatile static RAM that integrates powerfail deselect circuitry and battery control logic on a single die.


The 44-pin, 330mil SOIC provides a battery pin for an external, user-supplied battery. This is all that is required to fully non-volatize the SRAM.

Note: NF, Pin 7 must be tied to VSS.

Figure 4. Block Diagram

MAXIMUM RATING

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is

not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 2. Absolute Maximum Ratings

Symbol	Parameter		Value	Unit
T _A	Ambient Operating Temperature	Grade 1	0 to 70	°C
I A	Ambient Operating Temperature	Grade 6	-40 to 85	°C
T _{STG}	Storage Temperature (V _{CC} Off, Oscillator Off)	-55 to 125	°C	
T _{SLD} ⁽¹⁾	Lead Solder Temperature for 10 seconds	260	°C	
V _{IO}	Input or Output Voltages		-0.3 to V_{CC} + 0.5	V
V _{CC}	Supply Voltage		-0.3 to 4.6	V
Io	Output Current	20	mA	
P _D	Power Dissipation		1	W

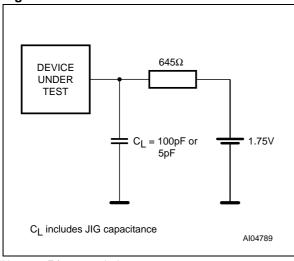
Note: 1. Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for between 90 and 120 seconds).

CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode.

DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure-

ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.


Table 3. Operating and AC Measurement Conditions

Parameter ⁽¹⁾	M48Z32V	Unit	
Supply Voltage (V _{CC})		3.0 to 3.6	V
Ambient Operating Temperature (T.)	Grade 1	0 to 70	°C
Ambient Operating Temperature (T _A) Grade 6		-40 to 85	°C
Load Capacitance (C _L)	Load Capacitance (C _L)		
Input Rise and Fall Times	Input Rise and Fall Times		
Input Pulse Voltages	0 to 3	V	
Input and Output Timing Ref. Voltages	1.5	V	

Note: 1. Output Hi-Z is defined as the point where data is no longer driven.

50pF for 35ns device.

Figure 5. AC Measurement Load Circuit

Note: 50pF for -35ns device.

Table 4. Capacitance

Symbol	Parameter ^(1,2)	Min	Max	Unit
C _{IN}	C _{IN} Input Capacitance		10	pF
C _{IO} (3)	C _{IO} ⁽³⁾ Input / Output Capacitance		10	pF

Note: 1. Effective capacitance measured with power supply at 3.3V; sampled only, not 100% tested.

2. At 25°C, f = 1MHz.

3. Outputs deselected.

Table 5. DC Characteristics

Sym	Parameter		Test Condition ⁽¹⁾	Min	Тур	Max	Unit
ILI	Input Leakage Current		$0V \le V_{IN} \le V_{CC}$			±1	μΑ
I _{LO} ⁽²⁾	Output Leakage Current		$0V \le V_{OUT} \le V_{CC}$			±1	μΑ
I _{BAT}	Battery Current		$T_A = 40$ °C; $V_{CC} = 0$ V $V_{BAT} = 3$ V		0.2	1.2	μΑ
	I_{CC1} Supply Current $\overline{E} = 0.2V$,		I _O = 0mA; Cycle Time = Min			30	mA
ICC1			$E = 0.2V$, other input = $V_{CC} - 2V$ or $0.2V$			45	mA
I _{CC2}	Supply Current (TTL Standby	/)	E = V _{IH}			800	μA
I _{CC3}	Supply Current (CMOS Stand	dby)	$\overline{E} = V_{CC} - 0.2V$			500	μA
V _{IL} (3)	Input Low Voltage			-0.3		0.8	V
V _{IH}	Input High Voltage			2.2		V _{CC} + 0.5	V
V _{OL}	Output Low Voltage		I _{OL} = 2.1mA			0.4	V
Voн	Output High Voltage		I _{OH} = -1mA	0.8V _{CC}			V

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70° C or -40 to 85° C; $V_{CC} = 3.0$ to 3.6V (except where noted).

OPERATING MODES

The M48Z32V also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single power supply for an out of tolerance condition. When V_{CC} is out of tolerance, the circuit write protects the SRAM, providing a high degree

of data security in the midst of unpredictable system operation brought on by low V_{CC} . As V_{CC} falls below approximately V_{SO} , the control circuitry connects the battery which maintains data until valid power returns.

Table 6. Operating Modes

Mode	V _{CC}	E	G	w	DQ0-DQ7	Power
Deselect		V _{IH}	Х	Х	High Z	Standby
WRITE	3.0 to 3.6V	V _{IL}	Х	V _{IL}	D _{IN}	Active
READ	3.0 to 3.00	V _{IL}	V _{IL}	V _{IH}	D _{OUT}	Active
READ		V _{IL}	V _{IH}	V _{IH}	High Z	Active
Deselect	V _{SO} to V _{PFD} (min) ⁽¹⁾	Х	Х	Х	High Z	CMOS Standby
Deselect	≤ V _{SO} ⁽¹⁾	Х	Х	Х	High Z	Battery Back-up Mode

Note: $X = V_{IH}$ or V_{IL} ; $V_{SO} =$ Battery Back-up Switchover Voltage.

^{2.} Outputs deselected.

^{3.} Negative spikes of -1V allowed for up to 10ns once per cycle.

^{1.} See Table 10, page 12 for details.

READ Mode

The M48Z32V is in the READ Mode whenever \overline{W} (WRITE Enable) is high, \overline{E} (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 262,144 locations in the static storage array. Thus, the unique address specified by the 15 Address Inputs defines which one of the 32,768 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within Address Access time (t_{AVQV}) after the last address input signal is stable, providing that the \overline{E} and \overline{G} access times are also satisfied. If the \overline{E} and \overline{G} access times are not met, valid data will be

available after the latter of the Chip Enable Access time (t_{ELQV}) or Output Enable Access time (t_{GLQV}).

The state of the eight three-state Data I/O signals is controlled by \overline{E} and \overline{G} . If the outputs are activated before t_{AVQV} , the data lines will be driven to an indeterminate state until t_{AVQV} . If the Address Inputs are changed while \overline{E} and \overline{G} remain active, output data will remain valid for Output Data Hold time (t_{AXQX}) but will go indeterminate until the next Address Access.

VALID

A0-A14

VALID

tAVQV

tELQV

tELQX

tGHQZ

tGLQX

Figure 6. READ Mode AC Waveforms

Note: WRITE Enable (\overline{W}) = High.

DQ0-DQ7

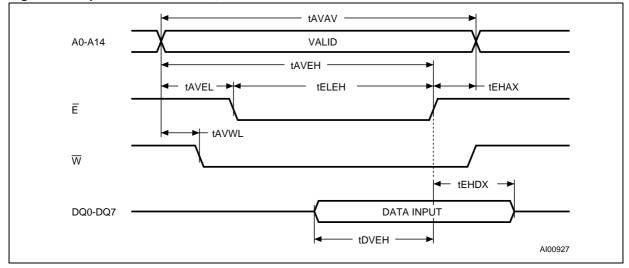
AI00925

Table 7. READ Mode AC Characteristics

Symbol						
	Parameter ⁽¹⁾		70	-35		Unit
		Min	Max	Min	Max	
t _{AVAV}	READ Cycle Time	70		35		ns
t _{AVQV}	Address Valid to Output Valid		70		35	ns
t _{ELQV}	Chip Enable Low to Output Valid		70		35	ns
t _{GLQV}	Output Enable Low to Output Valid		35		15	ns
t _{ELQX} (2)	Chip Enable Low to Output Transition	5		5		ns
t _{GLQX} (2)	Output Enable Low to Output Transition	5		0		ns
t _{EHQZ} (2)	Chip Enable High to Output Hi-Z		25		13	ns
t _{GHQZ} (2)	Output Enable High to Output Hi-Z		25		13	ns
t _{AXQX}	Address Transition to Output Transition	10		5	0	ns

Note: 1. Valid for Ambient Operating Temperature: T_A = 0 to 70°C or -40 to 85°C; V_{CC} = 3.0 to 3.6V (except where noted).

2. C_L = 5pF (see Figure 5, page 5).


WRITE Mode

The $\underline{\mathsf{M}}48Z32\mathsf{V}$ is in the WRITE Mode whenever $\overline{\mathsf{W}}$ and $\overline{\mathsf{E}}$ are low. The start of a WRITE is referenced from the latter occurring falling edge of W or $\overline{\mathsf{E}}$. A $\underline{\mathsf{W}}RIT\underline{\mathsf{E}}$ is terminated by the earlier rising edge of $\overline{\mathsf{W}}$ or $\overline{\mathsf{E}}$. The addresses must be held valid throughout the cycle. $\overline{\mathsf{E}}$ or $\overline{\mathsf{W}}$ must return high for a minimum of t_{EHAX} from Chip Enable or t_{WHAX} from WRITE Enable prior to the initiation of another

READ or WRITE cycle. Data-in must be valid t_{D-VWH} prior to the end of WRITE and remain valid for t_{WHDX} afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and \overline{G} , a low on \overline{W} will disable the outputs t_{WLQZ} after \overline{W} falls.

Figure 7. WRITE Enable Controlled, WRITE Mode AC Waveforms tAVAV A0-A14 VALID tAVWH -- tWHAX Ē tWLWH tAVWL $\overline{\mathsf{W}}$ - tWLQZ tWHQX tWHDX DQ0-DQ7 DATA INPUT tDVWH AI05662

Table 8. WRITE Mode AC Characteristics

			M48Z32V -70 -35			Unit
Symbol	Parameter ⁽¹⁾	-			35	
		Min	Max	Min	Max	
t _{AVAV}	WRITE Cycle Time	70		35		ns
t _{AVWL}	Address Valid to WRITE Enable Low	0		0		ns
t _{AVEL}	Address Valid to Chip Enable Low	0		0		ns
t _{WLWH}	WRITE Enable Pulse Width	50		25		ns
t _{ELEH}	Chip Enable Low to Chip Enable High	55		25		ns
t _{WHAX}	WRITE Enable High to Address Transition	0	0			ns
t _{EHAX}	Chip Enable High to Address Transition	0		0		ns
t _{DVWH}	Input Valid to WRITE Enable High	30		12		ns
t _{DVEH}	Input Valid to Chip Enable High	30		12		ns
twHDX	WRITE Enable High to Input Transition	5		0		ns
t _{EHDX}	Chip Enable High to Input Transition	5		0		ns
t _{WLQZ} (2,3)	WRITE Enable Low to Output Hi-Z		25		13	ns
t _{AVWH}	Address Valid to WRITE Enable High	60		25		ns
t _{AVEH}	Address Valid to Chip Enable High	60		25		ns
t _{WHQX} (2,3)	WRITE Enable High to Output Transition	5		5		ns

Note: 1. Valid for Ambient Operating Temperature: T_A = 0 to 70°C or -40 to 85°C; V_{CC} = 3.0 to 3.6V (except where noted).

2. C_L = 5pF (see Figure 5, page 5).

3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state.

Data Retention Mode

With valid V_{CC} applied, the M48Z32V operates as a conventional BYTEWIDETM static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when V_{CC} falls within the V_{PFD} (max), V_{PFD} (min) window. All outputs become high impedance, and all inputs are treated as "Don't care."

Note: A power failure during a WRITE cycle may corrupt data at the currently addressed location, but does not jeopardize the rest of the RAM's content. At voltages below $V_{PFD}(min)$, the user can be assured the memory will be in a write protected state, provided the V_{CC} fall time is not less than t_F . The M48Z32V may respond to transient noise spikes on V_{CC} that reach into the deselect window

during the time the device is sampling V_{CC} . Therefore, decoupling of the power supply lines is recommended.

When V_{CC} drops below V_{SO}, the control circuit switches power to the external battery which preserves data.

As system power returns and V_{CC} rises above V_{SO} , the battery is disconnected, and the power supply is switched to external V_{CC} . Write protection continues until V_{CC} reaches $V_{PFD}(min)$ plus $t_{REC}(min)$. Normal RAM operation can resume t_{REC} after V_{CC} exceeds $V_{PFD}(max)$.

For more information on Battery Storage Life refer to the Application Note AN1012.

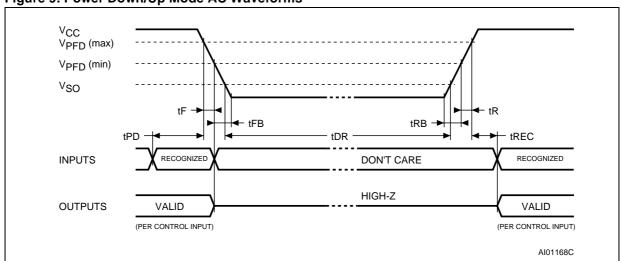


Figure 9. Power Down/Up Mode AC Waveforms

Table 9. Power Down/Up AC Characteristics

Symbol	Parameter ⁽¹⁾	Min	Max	Unit
t _{PD}	E or W at V _{IH} before Power Down	0		μs
t _F ⁽²⁾	V _{PFD} (max) to V _{PFD} (min) V _{CC} Fall Time	300		μs
t _{FB} ⁽³⁾	V _{PFD} (min) to V _{SS} V _{CC} Fall Time	10		μs
t _R	V _{PFD} (min) to V _{PFD} (max) V _{CC} Rise Time	10		μs
t _{RB}	V _{SS} to V _{PFD} (min) V _{CC} Rise Time	1		μs
t _{REC} ⁽⁴⁾	V _{PFD} (max) to Inputs Recognized	40	200	ms

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70° C or -40 to 85° C; $V_{CC} = 3.0$ to 3.6V (except where noted).

^{2.} V_{PFD} (max) to V_{PFD} (min) fall time of less than t_F may result in deselection/write protection not occurring until 200µs after V_{CC} passes V_{PFD} (min).

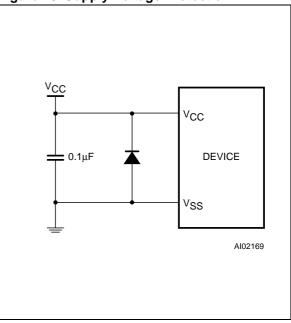
^{3.} V_{PFD} (min) to V_{SS} fall time of less than t_{FB} may cause corruption of RAM data.

^{4.} t_{REC} (min) = 20ms for industrial temperature Grade (6) device.

Table 10. Power Down/Up Trip Points DC Characteristics

Symbol	Parameter ^(1,2)		Тур	Max	Unit
V _{PFD}	Power-fail Deselect Voltage	2.7	2.85	3.0	V
V _{SO}	Battery Back-up Switchover Voltage		V _{PFD} – 100mV		V

Note: 1. All voltages referenced to VSS.


2. Valid for Ambient Operating Temperature: T_A = 0 to 70°C or -40 to 85°C; V_{CC} = 3.0 to 3.6V (except where noted).

V_{CC} Noise And Negative Going Transients

 I_{CC} transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the V_{CC} bus. These transients can be reduced if capacitors are used to store energy which stabilizes the V_{CC} bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of $0.1\mu F$ (see Figure 10) is recommended in order to provide the needed filtering.

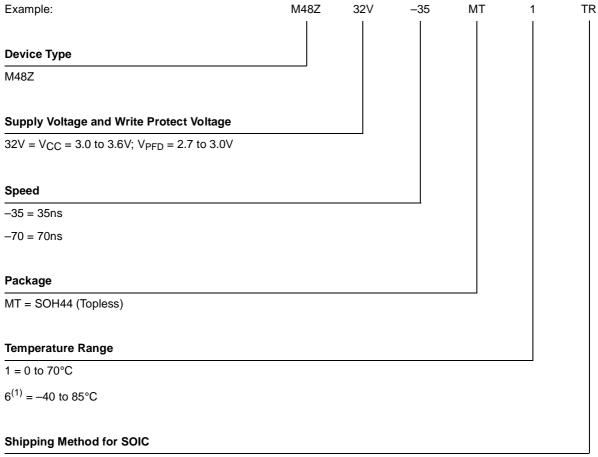
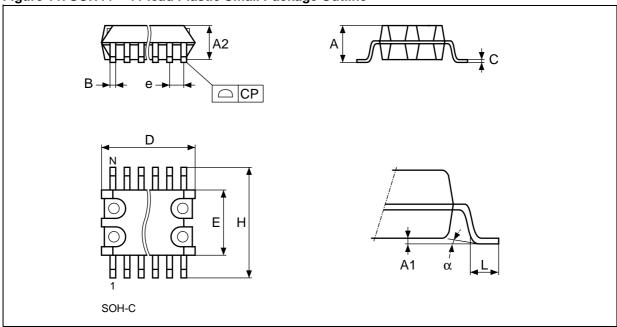

In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on V_{CC} that drive it to values below V_{SS} by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, ST recommends connecting a schottky diode from V_{CC} to V_{SS} (cathode connected to V_{CC} , anode to V_{SS}). (Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount).

Figure 10. Supply Voltage Protection

PART NUMBERING

blank = Tubes


TR = Tape & Reel

Note: 1. Industrial temperature grade available in SOIC package (SOH44) only.

For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you.

PACKAGE MECHANICAL INFORMATION

Figure 11. SOH44 – 44-lead Plastic Small Package Outline

Note: Drawing is not to scale.

Table 12. SOH44 – 44-lead Plastic Small Package Outline, Package Mechanical Data

Cumbal		mm			inch		
Symbol	Тур	Min	Max	Тур	Min	Max	
А			3.05			0.120	
A1		0.05	0.36		0.002	0.014	
A2		2.34	2.69		0.092	0.106	
В		0.36	0.46		0.014	0.018	
С		0.15	0.32		0.006	0.012	
D		17.71	18.49		0.697	0.728	
E		8.23	8.89		0.324	0.350	
е	0.81	_	-	0.032	_	-	
Н		11.51	12.70		0.453	0.500	
L		0.41	1.27		0.016	0.050	
α		0°	8°		0°	8°	
N		44	•	44			
СР			0.10			0.004	

REVISION HISTORY

Table 13. Revision History

Date	Revision Details
May 2002	First Issue

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com