256 Kbit (32Kb x 8) Low Voltage UV EPROM and OTP EPROM - 2.7V to 3.6V SUPPLY VOLTAGE in READ OPERATION - ACCESS TIME: - 70ns at $V_{CC} = 3.0 \text{V}$ to 3.6V - 80ns at $V_{CC} = 2.7V$ to 3.6V - PIN COMPATIBLE with M27C256B - LOW POWER CONSUMPTION: - 15µA max Standby Current - 15mA max Active Current at 5MHz - PROGRAMMING TIME 100µs/byte - HIGH RELIABILITY CMOS TECHNOLOGY - 2,000V ESD Protection - 200mA Latchup Protection Immunity - ELECTRONIC SIGNATURE - Manufacturer Code: 20h - Device Code: 3Dh # DESCRIPTION The M27W256 is a low voltage 256 Kbit EPROM offered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems and is organized as 32,768 by 8 bits. The M27W256 operates in the read mode with a supply voltage as low as 3V. The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery recharges. The FDIP28W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure. For applications where the content is programmed only one time and erasure is not required, the M27W256 is offered in PDIP28, PLCC32 and TSOP28 (8 x 13.4 mm) packages. Figure 1. Logic Diagram August 2002 1/15 Figure 2A. DIP Connections Figure 2B. LCC Connections Figure 2C. TSOP Connections **Table 1. Signal Names** | A0-A14 | Address Inputs | |-----------------|--------------------------| | Q0-Q7 | Data Outputs | | Ē | Chip Enable | | G | Output Enable | | V _{PP} | Program Supply | | V _{CC} | Supply Voltage | | V _{SS} | Ground | | NC | Not Connected Internally | | DU | Don't Use | Table 2. Absolute Maximum Ratings (1) | Symbol | Parameter | Value | Unit | |---------------------|-------------------------------------|------------|------| | T _A | Ambient Operating Temperature (3) | -40 to 125 | °C | | T _{BIAS} | Temperature Under Bias | -50 to 125 | °C | | T _{STG} | Storage Temperature | -65 to 150 | °C | | V _{IO} (2) | Input or Output Voltage (except A9) | –2 to 7 | V | | V _{CC} | Supply Voltage | –2 to 7 | V | | V _{A9} (2) | A9 Voltage | -2 to 13.5 | V | | V _{PP} | Program Supply Voltage | −2 to 14 | V | Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. **Table 3. Operating Modes** | Mode | E | G | A9 | V _{PP} | Q7-Q0 | |----------------------|-----------------------|-----------------|-----------------|-----------------|----------| | Read | V _{IL} | V _{IL} | Х | V _{CC} | Data Out | | Output Disable | V _{IL} | V _{IH} | Х | V _{CC} | Hi-Z | | Program | V _{IL} Pulse | V _{IH} | Х | V _{PP} | Data In | | Verify | V _{IH} | V _{IL} | Х | V_{PP} | Data Out | | Program Inhibit | V_{IH} | V _{IH} | Х | V_{PP} | Hi-Z | | Standby | V _{IH} | Х | Х | V _{CC} | Hi-Z | | Electronic Signature | V _{IL} | V _{IL} | V _{ID} | V _{CC} | Codes | Note: $X = V_{IH}$ or V_{IL} , $V_{ID} = 12V \pm 0.5V$. **Table 4. Electronic Signature** | Identifier | A0 | Q7 | Q6 | Q5 | Q4 | Q3 | Q2 | Q1 | Q0 | Hex Data | |---------------------|-----|----|----|----|----|----|----|----|----|----------| | Manufacturer's Code | VIL | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 20h | | Device Code | VIH | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 8Dh | 477 ^{2.} Minimum DC voltage on Input or Output is -0.5V with possible undershoot to -2.0V for a period less than 20ns. Maximum DC voltage on Output is V_{CC} +0.5V with possible overshoot to V_{CC} +2V for a period less than 20ns. ^{3.} Depends on range. **Table 5. AC Measurement Conditions** | | High Speed | Standard | |---------------------------------------|------------|--------------| | Input Rise and Fall Times | ≤ 10ns | ≤ 20ns | | Input Pulse Voltages | 0 to 3V | 0.4V to 2.4V | | Input and Output Timing Ref. Voltages | 1.5V | 0.8V and 2V | Figure 3. AC Testing Input Output Waveform Figure 4. AC Testing Load Circuit Table 6. Capacitance ⁽¹⁾ $(T_A = 25 \, ^{\circ}C, f = 1 \, MHz)$ | Symbol | Parameter | Test Condition | Min | Max | Unit | |------------------|--------------------|-----------------------|-----|-----|------| | C _{IN} | Input Capacitance | $V_{IN} = 0V$ | | 6 | pF | | C _{OUT} | Output Capacitance | V _{OUT} = 0V | | 12 | pF | Note: 1. Sampled only, not 100% tested. # **DEVICE OPERATION** The modes of operation of the M27W256 are listed in the Operating Modes. A single power supply is required in the read mode. All inputs are TTL levels except for V_{PP} and 12V on A9 for Electronic Signature. #### **Read Mode** The M27W256 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (E) is the power control and should be used for device selection. Output Enable (G) is the output control and should be used to gate data to the output pins, indepen- dent of device selection. Assuming that the addresses are stable, the address access time (t_{AVQV}) is equal to the delay from \overline{E} to output (t_{ELQV}) . Data is available at the output after delay of t_{GLQV} from the falling edge of \overline{G} , assuming that \overline{E} has been low and the addresses have been stable for at least t_{AVQV} - t_{GLQV} . # Standby Mode The M27W256 has a standby mode which reduces the supply current from 10mA to 10µA with low voltage operation $V_{CC} \leq 3.6V$, see Read Mode DC Characteristics table for details. The M27W256 is placed in the standby mode by applying a CMOS high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the G input. Table 7. Read Mode DC Characteristics ⁽¹⁾ $(T_A = -40 \text{ to } 85^{\circ}\text{C}; V_{CC} = 2.7 \text{V to } 3.6 \text{V}; V_{PP} = V_{CC})$ | Symbol | Parameter | Test Condition | Min | Max | Unit | |--------------------------------|-------------------------------|--|---------------------|-----------------------|------| | ILI | Input Leakage Current | $0V \le V_{IN} \le V_{CC}$ | | ±10 | μA | | I _{LO} | Output Leakage Current | $0V \le V_{OUT} \le V_{CC}$ | | ±10 | μA | | I _{CC} | Supply Current | $\overline{E} = V_{IL}, \overline{G} = V_{IL},$ $I_{OUT} = 0 \text{mA}, f = 5 \text{MHz},$ $V_{CC} \le 3.6 \text{V}$ | | 15 | mA | | I _{CC1} | Supply Current (Standby) TTL | E = V _{IH} | | 1 | mA | | I _{CC2} | Supply Current (Standby) CMOS | \overline{E} > V _{CC} - 0.2V,
V _{CC} \leq 3.6V | | 15 | μA | | I _{PP} | Program Current | $V_{PP} = V_{CC}$ | | 100 | μA | | V _{IL} | Input Low Voltage | | -0.6 | 0.2 V _{CC} | V | | V _{IH} ⁽²⁾ | Input High Voltage | | 0.7 V _{CC} | V _{CC} + 0.5 | V | | VoL | Output Low Voltage | I _{OL} = 2.1mA | | 0.4 | V | | Voн | Output High Voltage TTL | I _{OH} = -400μA | 2.4 | | V | Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}. 2. Maximum DC voltage on Output is V_{CC} +0.5V. Table 8. Read Mode AC Characteristics ⁽¹⁾ $(T_A = -40 \text{ to } 85^{\circ}\text{C}; V_{CC} = 2.7\text{V to } 3.6\text{V}; V_{PP} = V_{CC})$ | | | | | M27W256 | | | | | | | |-----------------------|-----------------|---|---|-----------------------|-----------|-----------------------|-----------|--------------------------|-----------|------| | Symbol Alt | | Parameter | Test
Condition | -80 ⁽³⁾ | | | | -100
(-120/-150/-200) | | Unit | | | | | Condition | V _{CC} = 3.0 | V to 3.6V | V _{CC} = 2.7 | V to 3.6V | V _{CC} = 2.7 | V to 3.6V | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{AVQV} | tACC | Address Valid to
Output Valid | $\overline{\underline{E}} = V_{IL},$
$\overline{G} = V_{IL}$ | | 70 | | 80 | | 100 | ns | | t _{ELQV} | t _{CE} | Chip Enable Low to
Output Valid | $\overline{G} = V_{IL}$ | | 70 | | 80 | | 100 | ns | | t _{GLQV} | toE | Output Enable Low to Output Valid | E = V _{IL} | | 40 | | 50 | | 60 | ns | | t _{EHQZ} (2) | t _{DF} | Chip Enable High to Output Hi-Z | $\overline{G} = V_{IL}$ | 0 | 40 | 0 | 50 | 0 | 60 | ns | | t _{GHQZ} (2) | t _{DF} | Output Enable High to Output Hi-Z | E = V _{IL} | 0 | 40 | 0 | 50 | 0 | 60 | ns | | t _{AXQX} | tон | Address Transition to Output Transition | E = V _{IL} ,
G = V _{IL} | 0 | | 0 | | 0 | | ns | Note: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}. 2. Sampled only, not 100% tested. 3. Speed obtained with High Speed AC measurement conditions. Figure 5. Read Mode AC Waveforms #### **Two Line Output Control** Because EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows: - a. the lowest possible memory power dissipation, - b. complete assurance that output bus contention will not occur. For the most efficient use of these two control lines, \overline{E} should be decoded and used as the primary device selecting function, while \overline{G} should be made a common connection to all devices in the array and connected to the \overline{READ} line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and hat the output pins are only active when data is desired from a particular memory device. #### **System Considerations** The power switching characteristics of Advance CMOS EPROMs require careful decoupling of the devices. The supply current, I_{CC}, has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of E. The magnitude of this transient current peaks is dependent on the capacitive and inductive loading of the device at the output. The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1µF ceramic capacitor be used on every device between V_{CC} and VSS. This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7µF bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for every eight devices. The bulk capacitor should be located near the power supply connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces. Table 9. Programming Mode DC Characteristics ⁽¹⁾ $(T_A = 25 \, ^{\circ}\text{C}; \, V_{CC} = 6.25 \text{V} \pm 0.25 \text{V}; \, V_{PP} = 12.75 \text{V} \pm 0.25 \text{V})$ | Symbol | Parameter | Test Condition | Min | Max | Unit | |-----------------|-------------------------|--------------------------------|------|-----------------------|------| | ILI | Input Leakage Current | $V_{IL} \le V_{IN} \le V_{IH}$ | | ±10 | μΑ | | Icc | Supply Current | | | 50 | mA | | I _{PP} | Program Current | $\overline{E} = V_{IL}$ | | 50 | mA | | V _{IL} | Input Low Voltage | | -0.3 | 0.8 | V | | V _{IH} | Input High Voltage | | 2 | V _{CC} + 0.5 | V | | V _{OL} | Output Low Voltage | I _{OL} = 2.1mA | | 0.4 | V | | V _{OH} | Output High Voltage TTL | I _{OH} = −1 mA | 3.6 | | V | | V _{ID} | A9 Voltage | | 11.5 | 12.5 | V | Note: V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}. Table 10. Programming Mode AC Characteristics (1) $(T_A = 25 \text{ °C}; V_{CC} = 6.25 \text{V} \pm 0.25 \text{V}; V_{PP} = 12.75 \text{V} \pm 0.25 \text{V})$ | Symbol | Alt | Parameter | Min | Max | Unit | |-------------------|------------------|--|-----|-----|------| | t _{AVEL} | t _{AS} | Address Valid to Chip Enable Low | 2 | | μs | | tQVEL | t _{DS} | Input Valid to Chip Enable Low | 2 | | μs | | tvphel | t _{VPS} | V _{PP} High to Chip Enable Low | 2 | | μs | | tvchel | t _{VCS} | V _{CC} High to Chip Enable Low | 2 | | μs | | tELEH | tpW | Chip Enable Program Pulse Width | 95 | 105 | μs | | tEHQX | tDH | Chip Enable High to Input Transition | 2 | | μs | | tQXGL | toes | Input Transition to Output Enable Low | 2 | | μs | | tGLQV | toE | Output Enable Low to Output Valid | | 100 | ns | | tGHQZ | t _{DFP} | Output Enable High to Output Hi-Z | 0 | 130 | ns | | t _{GHAX} | t _{AH} | Output Enable High to Address Transition | 0 | | ns | Note: V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP}. # **Programming** The M27W256 has been designed to be fully compatible with the M27C256B and has the same electronic signature. As a result the M27W256 can be programmed as the M27C256B on the same programming equipments applying 12.75V on VPP and 6.25V on V_{CC} by the use of the same PRES-TO II algorithm. When delivered (and after each erasure for UV EPROM), all bits of the M27W256 are in the '1' state. Data is introduced by selectively programming '0's into the desired bit locations. Although only '0's will be programmed, both '1's and '0's can be present in the data word. The only way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The M27W256 is in the programming mode when VPP input is at 12.75V, \overline{G} is at V_{IH} and \overline{E} is pulsed to V_{IL} . The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. V_{CC} is specified to be $6.25 \text{ V} \pm 0.25 \text{ V}$. Figure 6. Programming and Verify Modes AC Waveforms Figure 7. Programming Flowchart #### **PRESTO II Programming Algorithm** PRESTO II Programming Algorithm allows to program the whole array with a guaranteed margin, in a typical time of 3.5 seconds. Programming with PRESTO II involves the application of a sequence of 100µs program pulses to each byte until a correct verify occurs (see Figure 7). During programming and verify operation, a MARGIN MODE circuit is automatically activated in order to guarantee that each cell is programmed with enough margin. No overprogram pulse is applied since the verify in MARGIN MODE at V_{CC} much higher than 3.6V provides necessary margin to each programmed cell. # **Program Inhibit** Programming of multiple M27W256s in parallel with different data is also easily accomplished. Except for E, all like inputs including G of the parallel M27W256 may be common. A TTL low level pulse applied to a M27W256's E input, with Vpp at 12.75 V, will program that M27W256. A high level E input inhibits the other M27W256s from being programmed. ### **Program Verify** A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with G at V_{IL} , E at V_{IH} , V_{PP} at 12.75V and V_{CC} at 6.25V. ## **Electronic Signature** The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25°C \pm 5°C ambient temperature range that is required when programming the M27W256. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27W256, with $V_{CC} = V_{PP} = 5V$. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at VIL during Electronic Signature mode. Byte 0 (A0 = V_{IL}) represents the manufacturer code and byte 1 (A0 = VIH) the device identifier code. For the STMicroelectronics M27W256, these two identifier bytes are given in Table 4 and can be read-out on outputs Q7 to Q0. Note that the M27W256 and M27C256B have the same identifier bytes. # **ERASURE OPERATION (applies for UV EPROM)** The erasure characteristics of the M27W256 is such that erasure begins when the cells are exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. Research shows that constant exposure to room level fluorescent lighting could erase a typical M27W256 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27W256 is to be exposed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27W256 window to prevent unintentional erasure. The recommended erasure procedure for the M27W256 is exposure to short wave ultraviolet light which has wavelength 2537Å. The integrated dose (i.e. UV intensity x exposure time) for erasure should be a minimum of 15 W-sec/cm². The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 μW/cm² power rating. The M27W256 should be placed within 2.5 cm (1 inch) of the lamp tubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure. **Table 11. Ordering Information Scheme** TR = Tape & Reel Packing Note: 1. High Speed, see AC Characteristics section for further information. - 2. This speed also guarantees 70ns access time at V_{CC} = 3.0V to 3.6V. - 3. These speeds are replaced by the 100ns. - 4. Packages option available on request. Please contact STMicroelectronics local Sales Office. For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you. **Table 12. Revision History** | Date | Version | Revision Details | | |-------------|---------|---|--| | May 1998 | 1.1 | New STMicroelectronics Logo | | | July 1999 | 1.2 | ogramming Flowchart clarified (Figure 7) | | | March 2000 | 2.0 | Document Template changed | | | 30-Aug-2002 | 2.1 | Package mechanical data clarified for PDIP28 (Table 14),
PLCC32 (Table 15, Figure 10) and TSOP28 (Table 16, Figure 11) | | Table 13. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Mechanical Data | Council of | | millimeters | | | inches | | | |------------|-------|-------------|-------|-------|--------|-------|--| | Symbol | Тур | Min | Max | Тур | Min | Max | | | Α | | | 5.72 | | | 0.225 | | | A1 | | 0.51 | 1.40 | | 0.020 | 0.055 | | | A2 | | 3.91 | 4.57 | | 0.154 | 0.180 | | | А3 | | 3.89 | 4.50 | | 0.153 | 0.177 | | | В | | 0.41 | 0.56 | | 0.016 | 0.022 | | | B1 | 1.45 | _ | _ | 0.057 | _ | _ | | | С | | 0.23 | 0.30 | | 0.009 | 0.012 | | | D | | 36.50 | 37.34 | | 1.437 | 1.470 | | | D2 | 33.02 | _ | _ | 1.300 | _ | _ | | | E | 15.24 | _ | _ | 0.600 | _ | _ | | | E1 | | 13.06 | 13.36 | | 0.514 | 0.526 | | | е | 2.54 | _ | _ | 0.100 | _ | _ | | | eA | 14.99 | _ | _ | 0.590 | _ | _ | | | еВ | | 16.18 | 18.03 | | 0.637 | 0.710 | | | L | | 3.18 | 4.10 | | 0.125 | 0.161 | | | S | | 1.52 | 2.49 | | 0.060 | 0.098 | | | Ø | 7.11 | _ | _ | 0.280 | _ | - | | | α | | 4° | 11° | | 4° | 11° | | | N | | 28 | • | 28 | | | | Figure 8. FDIP28W - 28 pin Ceramic Frit-seal DIP, with window, Package Outline A2 B1 A3 A4 B1 C EA EB FDIPW-a Drawing is not to scale. Table 14. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Mechanical Data | Symbol | millimeters | | | inches | | | | |--------|-------------|--------|--------|--------|--------|--------|--| | | Тур | Min | Max | Тур | Min | Max | | | А | 4.445 | | | 0.1750 | | | | | A1 | 0.630 | | | 0.0248 | | | | | A2 | 3.810 | 3.050 | 4.570 | 0.1500 | 0.1201 | 0.1799 | | | В | 0.450 | | | 0.0177 | | | | | B1 | 1.270 | | | 0.0500 | | | | | С | | 0.230 | 0.310 | | 0.0091 | 0.0122 | | | D | 36.830 | 36.580 | 37.080 | 1.4500 | 1.4402 | 1.4598 | | | D2 | 33.020 | _ | _ | 1.3000 | - | _ | | | Е | 15.240 | | | 0.6000 | | | | | E1 | 13.720 | 12.700 | 14.480 | 0.5402 | 0.5000 | 0.5701 | | | e1 | 2.540 | _ | - | 0.1000 | - | _ | | | eA | 15.000 | 14.800 | 15.200 | 0.5906 | 0.5827 | 0.5984 | | | eB | | 15.200 | 16.680 | | 0.5984 | 0.6567 | | | L | 3.300 | | | 0.1299 | | | | | S | | 1.78 | 2.08 | | 0.070 | 0.082 | | | α | | 0° | 10° | | 0° | 10° | | | N | 28 | | | 28 | | | | Figure 9. PDIP28 - 28 pin Plastic DIP, 600 mils width, Package Outline Drawing is not to scale. Table 15. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Mechanical Data | Symbol | millimeters | | | inches | | | | |--------|-------------|-------|-------|--------|-------|-------|--| | | Тур | Min | Max | Тур | Min | Max | | | А | | 3.18 | 3.56 | | 0.125 | 0.140 | | | A1 | | 1.53 | 2.41 | | 0.060 | 0.095 | | | A2 | | 0.38 | _ | | 0.015 | _ | | | В | | 0.33 | 0.53 | | 0.013 | 0.021 | | | B1 | | 0.66 | 0.81 | | 0.026 | 0.032 | | | СР | | | 0.10 | | | 0.004 | | | D | | 12.32 | 12.57 | | 0.485 | 0.495 | | | D1 | | 11.35 | 11.51 | | 0.447 | 0.453 | | | D2 | | 4.78 | 5.66 | | 0.188 | 0.223 | | | D3 | 7.62 | _ | - | 0.300 | _ | _ | | | E | | 14.86 | 15.11 | | 0.585 | 0.595 | | | E1 | | 13.89 | 14.05 | | 0.547 | 0.553 | | | E2 | | 6.05 | 6.93 | | 0.238 | 0.273 | | | E3 | 10.16 | _ | _ | 0.400 | _ | _ | | | е | 1.27 | _ | _ | 0.050 | - | _ | | | F | | 0.00 | 0.13 | | 0.000 | 0.005 | | | R | 0.89 | _ | _ | 0.035 | - | _ | | | N | 32 | | | 32 | | | | Figure 10. PLCC32 - 32 lead Plastic Leaded Chip Carrier, Package Outline Drawing is not to scale. Table 16. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Mechanical Data | | | millimeters | | | inches | | |--------|-------|-------------|--------|--------|--------|--------| | Symbol | Тур | Min | Max | Тур | Min | Max | | А | | | 1.250 | | | 0.0492 | | A1 | | | 0.200 | | | 0.0079 | | A2 | | 0.950 | 1.150 | | 0.0374 | 0.0453 | | В | | 0.170 | 0.270 | | 0.0067 | 0.0106 | | С | | 0.100 | 0.210 | | 0.0039 | 0.0083 | | СР | | | 0.100 | | | 0.0039 | | D | | 13.200 | 13.600 | | 0.5197 | 0.5354 | | D1 | | 11.700 | 11.900 | | 0.4606 | 0.4685 | | е | 0.550 | _ | _ | 0.0217 | _ | _ | | Е | | 7.900 | 8.100 | | 0.3110 | 0.3189 | | L | | 0.500 | 0.700 | | 0.0197 | 0.0276 | | α | | 0° | 5° | | 0° | 5° | | N | | 28 | | | 28 | | Figure 11. TSOP28 - 28 lead Plastic Thin Small Outline, 8 x 13.4 mm, Package Outline Drawing is not to scale Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners. © 2002 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com