
PM73121 AAL1gator II DriverPMC-Sierra, Inc.

tPMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
L
o

n
g

 F
o

rm
 D

a
ta

 S
h

e
e

PM73121

AAL1gator II DRIVER

EIGHT LINK CIRCUIT EMULATION
SERVICE ON A CHIP DRIVER

USER’S MANUAL

Preliminary
Issue 2: November 1998
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Copyright © 1998 PMC-Sierra, Inc.
All Rights Reserved

AAL1gator II is a trademark of PMC-Sierra, Inc.

UNIX is a registered trademark of X/Open Company Limited.

Windows is a trademark of Microsoft Corporation.

All other brand or product names are trademarks
of their respective companies or organizations.

NOTE:The PM73121 AAL1gator II device contains SRTS logic for which
Bellcore holds the patent. Please refer to the NOTE on page 39 for
more information regarding Bellcore’s SRTS patent.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PMC-Sierra, Inc. PM73121 AAL1gator II Driver

L
o

n
g

 F
o

rm
 D

a
ta

 S
h

e
e

tPMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver

Preliminary
User’s Manual

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Public Revision History

Issue Number Issue Date Details of Change

Issue 2 November 1998 • Throughout manual, changed “AAL1gator” references to “AAL1gator II”.

• Modified “What Should You Read?” on page 1.

• Merged the Product Overview into Chapter 2, AAL1gator II Driver Overview.

• Added the section “How the AAL1gator II Driver Interacts with Applications” on
page 6.

• Modified Figure 2 on page 12.

• Added the section “OS Extensions” on page 19.

• Removed the subsections “State S4” and “State S5” from the section “The Driver
States” starting on page 7.

• Removed part 2 of Figure 1 on page 8.

• Moved data structures to “The Driver Data Structures” starting on page 15.

• Added the AAL1 Enhanced Setup Parameter Structure on page 18.

• Added Figure 5 on page 20.

• To “Step 3: Port OS Extensions” on page 22, added the second paragraph.

• To “Step 3b: Modify the oextport.h File” on page 22, added the first paragraph.

• To “Step 3c: Code the oextport.c File” on page 23, added the NOTE.

• Modified text in IMPORTANT note on page 23.

• Added the returns AAL1_LINENO_VC_MISMATCH and AAL1_NO_QUEUES to
the function “aal1ActivateChannel” on page 32.

• Combined the Error Codes Common to All PMC Drivers table and the Error Codes
Unique to the AAL1gator II Driver into one table: Table 10 on page 48. Deleted
many error codes from table that are not applicable.

• In Table 10 on page 48, corrected AAL1_BAD_DEVICE_NO to be
AAL1_BAD_DEV_NO.

• Added the API functions “aal1EnhancedActivateChannel” on page 33,
“Additional Configuration Functions” on page 47, and “aal1SetMaxBuf” on
page 47.

Issue 1 July 1998 Document created.

PMC-Sierra, Inc. PM73121 AAL1gator II Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver

Preliminary
User’s Manual
CONTENTS

Chapter 1
About this Manual. 1
Scope . 1
References . 1
What Should You Read? . 1
Typographical Conventions Used in this Manual . 2
Definitions of Acronyms Used in this Manual . 2

Chapter 2
AAL1gator II Driver Overview . 4
About this Chapter . 4
Overview of Software Features . 4

Performing Diagnostics . 4
Performing Initialization Functions . 4
Configuring the Device with System Defaults . 5
Providing APIs for Device Operation. 5
Managing Events . 5
Collecting Statistics . 5

How the AAL1gator II Driver Interacts with Applications . 6
Direct Function Calls . 6
Callback Functions . 6
Asynchronous Event Notification. 6

The Driver States . 7
State S0 (Power-On Initialization State). 9
State S1 (Power-On Self Test State) . 9
State S2 (Final System Initialization State) . 10
State S3 (Operational State) . 10

Re-entrancy Issues . 11

Chapter 3
AAL1gator II Driver Architecture . 12
About this Chapter . 12
AAL1gator II Driver Design . 12

The Device Driver Library (DDL) . 13
The Driver Restart and Reinitialization Functions (DRRs). 13
The Driver Control Functions (DCFs). 14
The Device Driver Operations (DDOs) . 14
The Driver Diagnostic Functions (DDGs). 14

The Device Control Task (DCT) . 14
The Interrupt Service Routine (ISR). 14
The Driver Data Structures . 15

Global Device Driver Database (GDDB) . 15
Device Control Block (DCB) . 16
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE iv

PMC-Sierra, Inc. PM73121 AAL1gator II Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver

Preliminary
User’s Manual
Device Data Block (DDB). 17
AAL1 Setup Parameter Structure . 18
AAL1 Enhanced Setup Parameter Structure . 18

OS Extensions. 19

Chapter 4
Porting Guidelines . 20
About this Chapter . 20
How the Source Code is Organized . 20
Porting Steps . 22

Step 1: Modify the gport.c File . 22
Step 2: Modify the gport.h File. 22
Step 3: Port OS Extensions . 22

Step 3a: Modify the types.h File . 22
Step 3b: Modify the oextport.h File. 22
Step 3c: Code the oextport.c File. 23

Step 4: Modify the aal1port.c File . 24
Step 5: Assign Proper Values to the Device Specification Constants in the aal1port.h File 24
Step 6: Assign Proper Values to the Constants in aal1port.h . 24
Step 7: Define the Pre-processor Macros . 25
Step 8: Replace Function Stubs in aal1port.c with Suitable Code . 25
Step 9: Define Types in the aal1port.h File . 26
Step 10: Code and Install the Interrupt Handler . 26
Step 11: Compile and Link the Source Code Files into Library/Object Modules . 27

Chapter 5
AAL1gator II Driver API . 28
About this Chapter . 28
Primary Driver API Functions to Perform AAL1gator Functions. 29

Initializing All Internal Device Registers . 29
Mapping a Line or Channels in a Line to an ATM VP/VC . 29

aal1GetQhandle . 30
aal1ActivateLine . 31
aal1DeactivateLine . 31
aal1ActivateChannel . 32
aal1EnhancedActivateChannel . 33
aal1DeactivateChannel . 34
aal1AssociateChannel . 35
aal1DisassociateChannel . 35
aal1EnableTxCond . 36
aal1DisableTxCond . 36
aal1EnableRxCond . 37
aal1DisableRxCond . 37

Processing OAM Cells . 38
aal1TxOAMcell . 38
aal1RxOAMcell . 38
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE v

PMC-Sierra, Inc. PM73121 AAL1gator II Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver

Preliminary
User’s Manual
Controlling the Synchronous Residual Time Stamp (SRTS) . 39
aal1EnableSRTS . 39
aal1DisableSRTS. 39

Statistics API Functions . 40
Obtaining Counts of Out-of-Sequence Cells or Cells with Uncorrectable SN CRCs . 40

aal1GetRIncorrectSn . 40
aal1GetRIncorrectSnp . 41

Obtaining Counts of Receive Underruns or Overruns . 42
aal1GetRevcUnderrun . 42
aal1GetRevcOverrun . 42

Obtaining Counts of AAL1 Cells Transmitted or Received. 43
aal1GetTCellCount . 43
aal1GetRCellCount . 43

Obtaining Counts of Pointer Mismatches or Pointer Reframes . 44
aal1GetPtrMismatch . 44
aal1GetRPtrReframeCount . 44

Obtaining Counts of Lost or Replaced AAL1 Cells . 45
aal1GetRLostCellCount. 45
aal1GetRReplacedCellCount. 45

Obtaining Counts of Dropped or Misinserted AAL1 Cells . 46
aal1GetRDroppedCellCount . 46
aal1GetRMisinsertedCellCount . 46

Additional Configuration Functions . 47
Obtaining or Setting the Maximum Buffer Depth for a Queue . 47

aal1GetMaxBuf . 47
aal1SetMaxBuf . 47

Appendix A
Error Codes . 48
Contacting PMC-Sierra, Inc.. 49
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE vi

PMC-Sierra, Inc. PM73121 AAL1gator II Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver

Preliminary
User’s Manual

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE vii

LIST OF FIGURES

Figure 1. State Transition Diagram of an AAL1gator II Driver . 8
Figure 2. AAL1gator II Driver Architecture . 12
Figure 3. Relationship Between the GDDB, the DCB, and the DDB . 15
Figure 4. Model of an AAL1gator II Device and its Associated AAL1gator II Driver . 19
Figure 5. AAL1gator II Driver Source Files . 20
Figure 6. Relationships Among the AAL1gator II Driver, other ATM Devices, and an ATM Network 29

PMC-Sierra, Inc. PM73121 AAL1gator II Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver

Preliminary
User’s Manual

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE viii

LIST OF TABLES

Table 1. Conventions Used in this Manual . 2
Table 2. Acronym Definitions . 2
Table 3. Global Device Driver Database (GDDB) . 16
Table 4. Device Control Block (DCB) . 16
Table 5. Data Types in the Device Data Block (DDB) . 17
Table 6. Data Types in the AAL1 Setup Parameter Structure . 18
Table 7. Data Types in the AAL1 Enhanced Setup Parameter Structure . 18
Table 8. GDDB Parameters to Define Appropriately for Your System . 25
Table 9. GDDB Parameters to Initialize to NULL . 25
Table 10. AAL1gator II Driver Error Codes . 48

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

a Chip

-
o

nd
Chapter 1
About this Manual

SCOPE
This user’s manual describes the software driver for the PMC-Sierra Eight Link Circuit Emulation Service on
device (the AAL1gator II Driver).

REFERENCES
This manual references the following documents:

• ANSI/ISO 9899-1990, C Programming Language standard (formerly, ANSI X3.159-1989).

• PMC-Sierra, PM73121 AAL1gator II Long Form Data Sheet (document number PMC-980620).

WHAT SHOULD YOU READ?

For the latest information about AAL1gator Driver issues...
Refer to the latest RELNOTES.TXT file included with the source code.

If you are an application programmer or system programmer. . .
Read Chapter 3, “AAL1gator II Driver Architecture”, for a quick overview of how the driver oper
ates. Then read Chapter 5, “AAL1gator II Driver API”, to learn about the API functions specific t
the AAL1gator II device.

If you will be porting the driver. . .
Read Chapter 4, “Porting Guidelines”, for tips on compiling the driver on your host system, a
bringing it up on your target system.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 1

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
TYPOGRAPHICAL CONVENTIONS USED IN THIS MANUAL
Different fonts are used in this manual to help you understand what is explained. Table 1 describes how these differ-
ent fonts are used.

DEFINITIONS OF ACRONYMS USED IN THIS MANUAL
Table 2 lists the acronyms used in this manual and their definitions.

Table 1. Conventions Used in this Manual

Font Explanation Example

Italic Emphasis The driver is fully tested and debugged so your initial testing will
not involve both untested hardware and untested software.

Courier Function names
or
Sample code

Code the SigFn() function.

#define MEM_FREE(a) xxx

Table 2. Acronym Definitions

Acronym Definition

AAL1 ATM Adaptation Layer 1

ANSI American National Standards Institute

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

CAS Channel Associated Signaling

CCB Channel Control Block

CDV Cell Delay Variation

CDVT Cell Delay Variation Tolerance

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DCB Device Control Block

DCF Driver Control Function

DCT Device Control Task

DDB Device Data Block

DDG Driver Diagnostic Function

DDL Device Driver Library

DDO Device Driver Operation

DRR Driver Restart and Reinitialization Function

EPLD Electrically Programmable Logic Device

GDDB Global Device Driver Database

ISR Interrupt Service Routine
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 2

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
LSB Least Significant Bit

OAM Operations, Administration, and Maintenance

OS Operating System

pid Process Identifier

RAM Random Access Memory

ROM Read Only Memory

RTOS Real-Time Operating System

SN Sequence Number

SNMP Simple Network Management Protocol

SNP Sequence Number Protection

SRTS Synchronous Residual Time Stamp

UDF Unstructured Data Format

UDF-HS High-Speed Unstructured Data Format

VC Virtual Channel

VP Virtual Path

Table 2. Acronym Definitions (Continued)

Acronym Definition
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 3

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

ent.
w the
ignifi-
ator II

ates sta-

These

or II

 of the

an

tom

er will
will log a
 driver.
Chapter 2
AAL1gator II Driver Overview

ABOUT THIS CHAPTER
This chapter provides an overview of the AAL1gator II Driver.

OVERVIEW OF SOFTWARE FEATURES
The AAL1gator II Driver is a system-ready driver for the PM73121 AAL1gator II device from PMC-Sierra. The
AAL1gator II Driver is written in ANSI “C” language and is portable to any Operating System (OS) environm
The AAL1gator II Driver offers a logical interface to the AAL1gator II device, and eliminates the need to kno
device-specific functions and how to operate the device to achieve those functions. The AAL1gator II Driver s
cantly reduces the system integration time, since it has been tested with the AAL1gator II device. The AAL1g
Driver performs diagnostics, sets up and clears AAL1 connections, monitors the device status, and accumul
tistics. A single AAL1gator II Driver can handle multiple AAL1gator II devices.

The following paragraphs detail some of the important AAL1gator II Driver functions.

Performing Diagnostics

At startup, the AAL1gator II Driver performs diagnostic tests on the AAL1gator II and the associated RAM.
tests detect interface errors between the CPU and the AAL1gator II. Specifically, the diagnostic software:

• Writes different patterns and reads them back to ensure the CPU-to-memory interface is functional.

• Writes patterns to detect RAM address aliasing errors.

• Writes values and reads them back from all device read/write registers to verify the CPU-to-AAL1gat
interface is functional.

Performing Initialization Functions

The AAL1gator II Driver performs the following intialization functions:

• Device initialization - Some registers should be preprogrammed, based on the hardware architecture
target system.

• Self testing - Self testing includes testing on-chip RAM and associated external RAM.

• Interrupt Service Routine (ISR) installation - If the device supports an interrupt, the driver will supply
interrupt handler and a place to install it during initialization. The AAL1gator II Driver performs local
processing for interrupts and generates events to the higher layer task.

• Custom event handlers installation - The driver provides hooks into which you can supply calls to cus
event handlers to meet system requirements.

• Buffer allocation - Buffers requiring pre-allocation will be allocated at initialization time.

• Queue creation - Required queues are created.

• Task creation - If the driver’s “sanity checks” are successful and the task exists for the driver, the driv
create the task and send an initial test message to the task. If the message is received by the task, it
message indicating successful startup. This process provides a checkpoint while you are porting the
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 4

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

ctures
 for the

I also

 VCs.

nd
er

river
his event,
verruns
ayer soft-
 (CDV)

vides
onse to
cumu-

as often as

ls sent,
nnection.
Configuring the Device with System Defaults

The AAL1gator II Driver configures the AAL1gator II with certain defaults. These defaults are in the porting section
of the AAL1gator II Driver and can be easily changed. Examples of such default configuration data include:

• the line configuration

• the default size of the partially filled cell before sending the cell

• the default fill character

• the number of buffers associated for each queue

• the size of the Cell Delay Variation Tolerance (CDVT)

• the Virtual Paths (VPs) and the Virtual Channels (VCs) for each queue

After the diagnostic tests are complete, the AAL1gator II Driver configures the AAL1gator II and its data stru
with those device values and prepares the device for real-time operation. Configures the system defaults
AAL1gator II (for example,).

Providing APIs for Device Operation

The AAL1gator II Driver provides APIs to control the following AAL1gator II operations:

• Setting up and clearing connections (a connection can be a VP or a VC). In structured mode, the AP
calculates the new structure size.

• Adding and removing n × 64 channels into an ATM connection.

• Sending and receiving OAM cells, including a pacing function for transmitting OAM cells.

• Mapping T1/E1/T3 channels to ATM VCs. The AAL1gator II Driver offers API functions for the higher
layer software to map and unmap lines (unstructured mode) and channels (structured mode) to ATM

• Activating and deactivating ATM channels. The AAL1gator II Driver offers API functions to activate a
deactivate ATM channels, retaining the n × 64 channel-to-ATM VC mapping (structured mode). The high
layer software can use this mapping capability to monitor the Channel Associated Signaling (CAS). In
structured mode, the AAL1gator II Driver contains API functions to add or remove additional n × 64
channels for an existing mapping.

Managing Events

While operating, the AAL1gator II generates an interrupt when it receives an OAM cell. The AAL1gator II D
processes the interrupt locally and then generates an event for the higher layer processes. Upon receiving t
the higher layer processes act on the OAM cell received. The AAL1gator II Driver also monitors the receive o
and underruns on a connection, and offers APIs to read the number of overruns and underruns. The higher l
ware can use the overrun and underrun counts to determine whether or not to adjust the Cell Delay Variation
configured for the connection setup during the connection definition time.

Collecting Statistics

The AAL1gator II Driver collects the statistics that are relevant to the AAL1gator II device operation and pro
these statistics in the form of APIs for the higher layer software. Statistics collection can be performed in resp
an interrupt from the device, or the device can be polled periodically. For statistical information, the driver ac
lates select hardware register counters into larger counters. These larger counters do not need to be read
the corresponding hardware register counters.

From the AAL1gator II data structures, the AAL1gator II Driver retrieves statistics, such as the number of cel
the number of cells received, the conditioned data cells sent on a VC, and overruns and underruns on a co
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 5

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

 the

 the
T to

ble to
ch as

l from
rovided
e, the

nal the
ny other

ys-
The AAL1gator II Driver periodically monitors the status of errors (such as overruns and underruns), and accumu-
lates the occurrence of those events. The AAL1gator II Driver uses the timer function in the OS Extensions (a well-
defined set of OS wrapper functions) to run a periodic accumulation timer. The AAL1gator II Driver contains APIs
for the higher layer software to read the values of those statistics.

HOW THE AAL1GATOR II DRIVER INTERACTS WITH APPLICATIONS
The AAL1gator II Driver interacts with the application layer in the following ways:

• The application invokes the driver via direct function calls (API functions). The driver then executes in
context of the application, and returns various data as specified by the API.

• Callback functions provided by the application to the AAL1gator II Driver DCT are to be installed into
AAl1 task (aal1port.c file) during porting. These functions will be used for event notifications by the DC
the application.

• Event notifications by the DCT to the application.

Direct Function Calls

The direct function calls are the API functions that are part of the Device Driver Library (DDL) and are availa
the application for a variety of actions. For example, the application uses direct function calls su
Aal1ActivateChannel (refer to “aal1ActivateChannel” on page 32) and Aal1DeactivateChannel (refer
to “aal1DeactivateChannel” on page 34) for setting up and tearing down connections.

Callback Functions

These functions are provided by the application to the AAL1gator II Driver. When the DCT receives a signa
the ISR about the occurrence of a significant event, such as the reception of an OAM cell, it calls a function p
by the application as a callback routine to inform the application of this routine. Within this callback routin
application can take whatever action the corresponding OAM cell requires.

Asynchronous Event Notification

Instead of using callback functions to notify the application layer of significant events, the DCT can also sig
application. This signaling can occur in the form of an event notification or sending a message in a queue or a
mechanism the user wants to employ. The signaling function used by the AAL1gator II Driver, Aal1SigFn (refer to
“Step 4: Modify the aal1port.c File” on page 24), is a porting function and can be modified by the user to fit the s
tem messaging scheme.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 6

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

te

te
API

 by S2
 entity).
 device,

al condi-
THE DRIVER STATES
The AAL1gator II Driver can be in one of four states. These states function as checkpoints to verify the proper initial-
izations have occurred before calling the API functions, and to ensure the API functions are not called in the wrong
order. Before the driver can enter the next state, a function must verify the driver is in the correct state. The function
must then complete successfully so the driver can transition to the next state. The states are as follows:

• S0: Power-On Initialization State. The Aal1PowerOnInit function checks for the S0 state. If the S0 sta
exists and the function is successful, the state is changed to S1.

• S1: Power-On Self Test State. The Aal1PowerOnSelfTest function checks for the S1 state. If the S1
state exists and the function is successful, the state is changed to S2.

• S2: Final System Initialization State. The Aal1FinalInit function checks for the S2 state. If the S2 sta
exists and the function is successful, the state is changed to S3, which is the required state for most
functions.

• S3: Operational State.

In normal conditions, the transition sequence between the states is as follows: S0 followed by S1, followed
(after permission from the management entity), followed by S3 (again, after permission from the management
The driver is usually in the S3 state. Most API functions, such as transmit and receive operations on the
require the driver to be in the S3 operational state. As Figure 1 on page 8 shows, the initial software of a system
should bring the driver to state S3 by making the following sequence of calls: Aal1PowerOnInit();
Aal1PowerOnSelfTest(); Aal1FinalInit(). This sequence of calls is equivalent to open() in a UNIX/
DOS environment. The driver may exit this S3 state and enter any of the preceding states in case of abnorm
tions (such as system hang-up, and restart/reset) or during a system reconfiguration phase.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 7

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Figure 1 shows the driver states. The driver is assumed to be in the S0 state at power-up.

The driver functions as a simple state machine. The events of interest are:

• Power-up.

• Operations the API function calls schedule for the device.

• Device interrupts.

• Timer events that schedule diagnostic checks and notify timeout conditions.

Figure 1. State Transition Diagram of an AAL1gator II Driver

S0

Power-On
Initialization

Aal1PowerOnInit()

Result?
F

T

S0

S1

Power-On Self
Test

Aal1PowerOnSelfTest()

Result? F

T

S1

S2

Final
Initialization

Result?
F

T

S2

Aal1FinalInit()

T = True
F = False
S0: Power-On Initialization State
S1: Power-On Self Test State
S2: Final System Initialization State
S3: Operational State

S3

Any Other API
Function

API()

S3

Re-initialize

Aal1DriverInit()

S0
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 8

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

inter-

ou
ected
ram-

sor

e
the

ay not

inter-

e test(s)
State S0 (Power-On Initialization State)

S0 is entered from the Aal1DriverInit() function. The driver (in S0) then proceeds to the
Aal1PowerOnInit() function that checks for the S0 state. If the S0 state exists and the Aal1PowerOnInit()
function is successful, the state is changed to S1.

NOTE: In the S0 state, the OS kernel services may not yet be available. Also, the interrupt system may not
be fully initialized. Thus, the code executed in S0 should:

• Use only stack or scratch pad RAM for any local variables.

• Do not expect the interrupt services to be available. (To avoid problems with an uninitialized
rupt system, use status polling to recognize events of interest and disable interrupts from the
device.)

Aal1PowerOnInit() performs these steps:

1. Determines if the results of the device’s power-on diagnostics (if available) are acceptable. If not
acceptable, Aal1PowerOnInit() exits with an error code.

2. Initializes the device to the configuration available in the ROM (Read Only Memory). Generally, y
can change this new configuration by recompiling. This configuration should be similar to the exp
configuration of the device when the system is operational. For example, if the device has a prog
mable clock rate, then initialize the device to the clock rate being used in the system.

NOTE: In this user’s manual, “ROM” designates the data is contained in the initial load of the proces
system. It may be in an electrical ROM, or may be a part of the boot-loaded code.

3. Changes the state to S1.

State S1 (Power-On Self Test State)

S1 is entered from the Aal1PowerOnInit() function. The driver (in S1) then proceeds to th
Aal1PowerOnSelfTest() function that checks for the S1 state. If the S1 state exists and
Aal1PowerOnSelfTest() function is successful, the state is changed to S2.

NOTE: In the S1 state, the OS kernel services may not yet be available. Also, the interrupt system m
be fully initialized. Thus, code executed in S1 should:

• Use only stack or scratch pad RAM for any local variables.

• Do not expect the interrupt services to be available. (To avoid problems with an uninitialized
rupt system, use status polling to recognize events of interest and disable interrupts from the
device.)

Aal1PowerOnSelfTest() performs these steps:

1. Temporarily changes the current chip configuration.

2. Prepares for the power-on self test.

3. Performs the power-on self test.

4. Stores the result.

5. If all tests pass, sets the state to S2. If all tests did not pass, sets the state to S1 and indicates th
that failed.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 9

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

 regis-

 the

he inter-
t

hould

State S2 (Final System Initialization State)

S2 is entered from the Aal1PowerOnSelfTest() function. The driver (in S2) then proceeds to the
Aal1FinalInit() function that checks for the S2 state. If the S2 state exists and the Aal1FinalInit() func-
tion is successful, the state is changed to S3.

NOTE: In the S2 state, the OS kernel services are assumed to be available. Also, the interrupt system is
assumed to be fully initialized. Thus, code executed in S2 can:

• Allocate memory.

• Create processes.

• Acquire timer handles.

• Expect the interrupt services to be available.

Aal1FinalInit() performs these steps:

PHASE A:

1. Allocates and initializes the DDB and the DCB for the driver.

2. Initializes the shadow registers from the values in the scratch pad RAM, and verifies the shadow
ters against the values in the device registers.

3. Allocates the required memory buffer pools and timer handles.

4. Initializes the interrupt vectors. (This facility should be made available by the API of the driver for
interrupt subsystem.)

5. Enables device interrupts.

PHASE B:

6. Completes the remaining power-on diagnostic tests. These tests include the tests that examine t
rupt system, and those aspects of the device that can be effectively tested only in an environmen
defined by an OS kernel (for example, those requiring timer services).

7. Configures the device for the operational state (S3). (By this time, the final system configuration s
be known to the management entities.) Optionally, this step can be skipped if it is known that the
power-on initialization is also the initialization for the operational state.

8. If both Phase A and B pass successfully, exits to state S3; else enters the error state and exits.

State S3 (Operational State)

In the S3 state, the API is fully available. This is the operational state for the driver.

Aal1DriverInit() performs these steps:

1. Re-initializes all data structures.

2. Changes state to S0.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 10

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

ications
 “OK”
“race”
t be re-
r notify-
RE-ENTRANCY ISSUES
In a multitasking/multithreaded environment, such as exists in a real-time OS, the driver calls may be accidentally re-
entered. The driver does not check to prevent such re-entries. In a re-entrance, the driver’s data structures remain
intact; however, there still may be unpredictable consequences for the application. For example, if two appl
concurrently issue an API function call to set up the same Channel Control Block (CCB), the driver will return
for both applications, but only one of the applications will actually set up the specified CCB. To avoid such
conditions, design the application so only DDO functions can be re-entered; non-DDO functions should no
entrant. Single supervisory tasks (those that are per driver) should be able to invoke non-DDO functions afte
ing the other applications are using the DDOs.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 11

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Chapter 3
AAL1gator II Driver Architecture

ABOUT THIS CHAPTER
To help the application programmer design applications that use the AAL1gator II Driver, this chapter presents gen-
eral information about how the driver operates. It does not provide the internal details and design of the driver.

AAL1GATOR II DRIVER DESIGN
The AAL1gator II Driver provides a high-level interface to the AAL1gator II device. Figure 2 shows the detailed
architecture of the AAL1gator II Driver, including the main data structures of the driver. It also shows the interac-
tion between the modules and their accesses to the data structures.

Figure 2. AAL1gator II Driver Architecture

. . .

Asynchronous Event Notification

$$/�JDWRU�,,  'ULYHU

OS Extensions

OS

Driver Data Structures

ISR

Device Control
Task
(DCT)

Device Driver Library (DDL)

Application

Driver Restart and
Reinitialization

Functions (DRRs)

Device Driver
Operations (DDOs)

• Configuration
• Status
• Statistics

Device Data
Block (DDB)

Device Control
Block (DCB)

Global Device
Driver Database

(GDDB)

Driver Diagnostic
Functions (DDGs)

PM73121
$$/�JDWRU�,, 

Device I/O
Interrupt

Function Calls

Data Access

PM73121
$$/�JDWRU�,, 

PM73121
$$/�JDWRU�,, 

Driver Control
Functions (DCFs)
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 12

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

service

d the

ertain

d pro-

n the

vice

), and
The driver is divided into modules that perform different functions. These modules communicate with each other and
access the AAL1gator II Driver data structure, as well as the AAL1gator II device’s internal data structures to
the APIs called by the application.

The AAL1gator II Driver is divided into the following major functional blocks:

• The Device Driver Library (DDL)

• The Device Control Task (DCT)

• The Interrupt Service Routine (ISR)

• The driver data structures

The OS Extensions module is a software unit that is also provided with the AAL1gator II Driver.

For any number of AAL1gator II devices controlled by the driver, there is only one instance of the DDL an
DCT. The AAL1gator II devices are identified using an incremental number (starting at 0) called the device_id. All
API functions require the device_id as an input. The driver may also expect a timer signal so it can schedule c
activites, such as updating counts and performing diagnostics.

The following sections explain the functional blocks of the AAL1gator II Driver.

The Device Driver Library (DDL)

The DDL provides the applications with the functions that execute in the context of the calling application an
vide the driver services. The DDL can be divided into the following major sets of API functions:

• The Driver Restart and Reinitialization Functions (DRRs)

• The Device Driver Operations (DDOs)

• The Driver Control Functions (DCFs)

• The Driver Diagnostic Functions (DDGs)

The following sections describe each of these DLL API functions.

The Driver Restart and Reinitialization Functions (DRRs)

The DRR helps the application initialize the AAL1gator II Driver and the AAL1gator II devices. The functions i
DRR are explained in the following subsections.

Aal1PowerOnInit

The Aal1PowerOnInit function initializes the device to a default configuration, as specified in the Global De
Driver Database (GDDB), for that device.

NOTES:

• Aal1PowerOnInit does not require OS support.

• The GDDB must be properly initialized before executing Aal1PowerOnInit. The GDDB is ini-
tialized in the Aal1DriverInit function prior to calling Aal1PowerOnInit.

Aal1FinalInit

The Aal1FinalInit function allocates the system resources (the DCT, the DCB, the DDB, and the timer
generates the complete environment for the driver API (the DDO) to be operational. Aal1FinalInit optionally
initializes the device as specified by the initialization vector defined by the application. Aal1FinalInit assumes
the availability of OS services.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 13

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

c-
rnate OS-

er events

pplica-
 for this
The Driver Control Functions (DCFs)

SetAal1Pid is a DCF that allows the application to specify the process identifier (the pid) the driver will pass to
Aal1SigFn() to signal events of interest. This allows communication between the AAL1gator II Driver ISR and
the AAL1gator II Driver task.

The Device Driver Operations (DDOs)

The DDOs are the API functions used by the applications predominantly to exercise the functions for which the
device exists. The API functions supported by the AAL1gator II Driver are described in Chapter 5, AAL1gator II
Driver API, starting on page 28.

The Driver Diagnostic Functions (DDGs)

Aal1PowerOnSelfTest is a generic DDG function that performs an exhaustive test on the various functions of
the device and returns the result of the tests.

The Device Control Task (DCT)

The AAL1gator II Driver contains a DCT. For a single device type, there is one driver and one DCT. For example,
for three PM73121 devices, there is one driver with one DCT.
The DCT performs the following functions:

• Maintains the updated counts in the DDB corresponding to the counts maintained by a device.

• Receives the signals from the ISR and takes appropriate action on these signals.

• Schedules “sanity” checks on the device and the driver databases.

• Signals events of interest to a predefined application task.

The ISR signals events to the DCT with the Aal1SigFn() function. This function uses OS Extensions queue fun
tions to send messages to the DCT. If queue send operations are not permitted inside the ISR, then an alte
specific solution may be needed.
Timer events are scheduled in the DCT to provide periodic sanity checks and database updating. These tim
are accomplished with OS Extensions timer calls.

The DCT may signal significant events to a predefined application task. Since it is impossible to know what a
tion is used, the application signaling is left as a porting issue. A suggestion is to use OS Extensions calls
reporting since OS Extensions is already used by the DCT.

The Interrupt Service Routine (ISR)

The ISR performs the following functions:

• Traps hardware interrupts generated by the device.

• Acknowledges the interrupt source so the device deactivates the hardware interrupt signal.

• Signals the DCT of the interrupts.

• Updates the DCB and DDB.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 14

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

 each
The Driver Data Structures

The following are the types of data structures associated with the driver:

• The Global Device Driver Database (GDDB)

• The Device Control Block (DCB)

• The Device Data Block (DDB)

• The AAL1 Setup Parameter Structure

• The AAL1 Enhanced Setup Parameter Structure

Figure 3 shows the relationship between the GDDB, the DCB, and the DDB.

The following sections explain the global data structures.

Global Device Driver Database (GDDB)

Description: An array of structures, in which each structure contains the following information about
device the driver controls and monitors:

• The physical address of the device.

• The current configuration details of the driver and the device (shadow registers).

• The data structures for internal driver use.

Data Type: Aal1GDDB (struct). This data type is declared in the aal1str.h file.

Identifier: gddb[AAL1_MAX_DEVICES]. This array is declared in the aal1ini.c file.

Figure 3. Relationship Between the GDDB, the DCB, and the DDB

GDDB[0]

GDDB[1]

GDDB[n-1]

DCB0

DCB1

DCBn-1

DDB0

DDB1

DDBn-1

DDB

DCB

DCB2

DDB2

GDDB

GDDB[2]
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 15

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Table 3 lists and describes the data types in the GDDB.

Device Control Block (DCB)

Description: For each device being controlled by the driver, there is a unique DCB that contains the follow-
ing control information about the device:

• The backup configuration of the device for recovery and diagnostics purposes.

• The driver control information; for example, the pid to be passed to Aal1SigFn() and the
DCT’s pid.

Data Type: DCB (struct). This data type is declared in the aal1str.h file.

Identifier: Aal1GDDB[device_id].ptDcb. This identifier is dynamically allocated.

Table 4 lists and describes the data types in the DCB.

Table 3. Global Device Driver Database (GDDB)

Data Type Field Name Description

char sDeviceName[AAL1_NAME_LENGTH] Indicates the device name.

UINT2 *pu2HardwareBaseAddress Indicates the hardware base address of the
AAL1gator II.

UINT2 *pu2MemoryAddress Indicates the memory start address of the
AAL1gator II.

UINT4 u4InterruptVector Indicates the hardware interrupt vector.

tAal1InitVector initialCfg Indicates the device initial configuration.

tAal1DCB *ptDcb Points to the Device Control Block (DCB).

tAal1DCB *ptDdb Points to the Device Data Block (DDB).

UINT4 u4DriverState Indicates the driver state (S0, S1, S2, or S3).

UINT4 u4ChipVersion Indicates the version of the device.

Table 4. Device Control Block (DCB)

Data Type Field Name Description

UINT4 u4FillChar Indicates the fill character for partially filled cells.

UINT4 u4DCTTaskId Indicates the DCT task ID.

UINT4 u4TimerId Indicates the timer ID for statistics collection.

UINT4 u4nVCs Indicates the number of allocated VCs.

tAal1InitVector finalCfg Indicates the device’s final configuration.

taal1MapStr chQuMap[AAL1_MAX_QUEUE] Indicates the channel-to-AAL1gator II queue mapping.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 16

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Device Data Block (DDB)

Description: Stores statistics for individual devices being monitored by the driver. There is one DDB for
each device being monitored.

Data Type: DDB (struct). The data type is declared in the aal1str.h file.

Identifier: Aal1Gddb[device_id].ptDdb. This identifier is dynamically allocated.

Table 5 lists and describes the data types in the DDB.

Table 5. Data Types in the Device Data Block (DDB)

Data Type Field Name Description

UINT4 u4RecvUnderrun[AAL1_MAX_QUEUE] Receive underruns.

UINT4 u4RecvOverrun[AAL1_MAX_QUEUE] Receive overruns.

UINT4 u4PtrMismatch[AAL1_MAX_QUEUE] Receive pointer mismatch realignments.

UINT4 u4InvalidSN[AAL1_MAX_QUEUE] Invalid sequence number.

UINT4 u4FrcdUnderrun[AAL1_MAX_QUEUE] Forced underrun.

UINT4 u4PtrSearch[AAL1_MAX_QUEUE] Pointer search.

UINT4 u4BlnkAllocTbl[AAL1_MAX_QUEUE] Blank allocation table.

UINT4 u4CellRecvSt[AAL1_MAX_QUEUE] Cell received status.

UINT4 u4CellLost[AAL1_MAX_QUEUE] Cell lost.

UINT4 u4TCellCount[AAL1_MAX_QUEUE] Transmit cell count.

UINT4 u4RCellCount[AAL1_MAX_QUEUE] Receive cell count.

UINT4 u4RDroppedCellCount [AAL1_MAX_QUEUE] Receive dropped cell count.

UINT4 u4RIncorrectSnp[AAL1_MAX_QUEUE] Receive incorrect Sequence Number Protection (SNP) count.

UINT4 U4RLostCellCount [AAL1_MAX_QUEUE] Receive lost or replaced cell count.

UINT4 u4RMisinserted [AAL1_MAX_QUEUE] Receive misinserted cells

UINT4 u4PtrParityErrs [AAL1_MAX_QUEUE] Receive pointer parity errors

UINT4 u4RPtrReframeCount [AAL1_MAX_QUEUE] Receive reframes count.

UINT4 u4TSuppressedCellCnt[AAL1_MAX_QUEUE] Transmit suppressed cell count.

UINT4 u4TCondCellCount[AAL1_MAX_QUEUE] Transmit conditioning cell count.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 17

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

to

 by the
AAL1 Setup Parameter Structure

Description: Used to configure standard connections.

Data Type: taal1TxRxParam (struct). The data type is declared in the aal1str.h file.

Table 6 lists and describes the data types in the AAL1 setup parameter structure used by the Aal1ActivateChannel
function (refer to “aal1ActivateChannel” on page 32) and the Aal1EnhancedActivateChannel function (refer
“aal1EnhancedActivateChannel” on page 33).

AAL1 Enhanced Setup Parameter Structure

Description: Used to configure enhanced connections.

Data Type: taal1EnhancedParam (struct). The data type is declared in the aal1str.h file.

Table 7 lists and describes the data types in the AAL1 enhanced setup parameter structure used
Aal1EnhancedActiveChannel function (refer to “aal1EnhancedActivateChannel” on page 33).

Table 6. Data Types in the AAL1 Setup Parameter Structure

Data Type Field Name Description

UINT4 u4Signalling Signalling enable or disable.

UINT4 u4CheckParity Parity enable or disable.

UINT2 u2TxVp Transmit VP.

UINT2 u2TxVc Transmit VC.

UINT2 u2RxVp Receive VP.

UINT2 u2RxVc Receive VC.

Table 7. Data Types in the AAL1 Enhanced Setup Parameter Structure

Data Type Field Name Description

UINT2 u2MaxBuf Defines the maximum buffer depth in cells.

UINT2 u2CDVT Defines the Cell Delay Variation Time (CDVT).

UINT2 u2DisableSN Disables Sequence Number (SN) processing.

UINT2 u2PartialCell Defines the partial cell size in bytes.

UINT2 u2SNConfig Defines the SN configuration.
1 Drop the first cell.
0 If the SNP is correct, recieve the first cell.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 18

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

rting sec-
 in the

 PMC
OS Extensions

The PMC OS Extensions module is an operating system wrapper that is designed to provide a consistent interface to
the underlying OS. The PMC OS Extensions module provides the following functionalities:

• Message queues
• Periodic timers
• Event notification
• Task management
• Memory management
• Debug logging

The PMC OS Extensions module separates the RTOS porting into a separate module (see Figure 4). The po
tion calls the PMC OS Extensions module interface to perform RTOS actions. The only modifications required
porting section are for device I/O and system configuration.

Using the PMC OS Extensions module with the AAL1gator II Driver is optional. Customers may replace the
OS Extensions functions with their own OS-specific wrappers.

Figure 4. Model of an AAL1gator II Device and its Associated AAL1gator II Driver

Device I/O

System Calls

Data Access OS Extensions
Interface

$$/�JDWRU�,,  'ULYHU

PMC (or User)
OS Extensions

RTOS

Driver
Core

Driver Porting
Section

PM73121
$$/�JDWRU�,,
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 19

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

efer to
Chapter 4
Porting Guidelines

ABOUT THIS CHAPTER
This chapter describes the steps to port the AAL1gator II Driver to a specific hardware and OS environment. These
steps include developing additional code and defining the various macros and preprocessor constants used by the
driver code. For easy porting, the changes required for the driver are grouped into two files: the Aal1port.h file, and
the Aal1port.c file. Global changes required by the AAL1gator Drivers are in two separate files: the gport.h file and
the gport.c file.

In addition to the driver porting files, OS extensions must be ported for the target OS. PMC-Sierra provides OS
Extensions, which is a wrapper that provides a consistent interface to the OS and is used in the AAL1gator II Driver
(for more information on the OS Extensions, refer to “OS Extensions” on page 19). Since the AAL1gator II Driver
uses only a subset of the functions available in OS Extensions, porting only those functions is sufficient. R
“Step 3: Port OS Extensions” starting on page 22 for information on porting OS Extension.

NOTE: PMC-Sierra recommends you do not modify the core files during porting.

HOW THE SOURCE CODE IS ORGANIZED
The code for the AAL1gator II Driver is organized into the C language files listed below.

Figure 5. AAL1gator II Driver Source Files

RootDiv

common

pm73121

osext

src/gport.c

inc/global.h

inc/gport.h

src/aal1drv.c

inc/aal1def.h

src/oextport.c

inc/oext.h

inc/types.h

inc/oextport.h

inc/aal1extn.h

inc/aal1port.h

inc/aal1ptr.h

src/aal1ini.c

src/aal1mis.c

src/aal1port.c
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 20

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
The following header files are necessary for the AAL1gator II Driver API functions to operate:

global.h
This file contains general declarations for the AAL1gator II Driver. Include this file before any
other files pertaining to the driver are included.

gport.h
This file contains general porting information for the AAL1gator II Driver..

aal1def.h
This file contains pre-processor constants for: error code values for the AAL1gator II Driver API,
registers numbers in the AAL1gator II device, and default initialization values for the device.

aal1extn.h
This file contains ANSI function prototypes for each function in the driver’s API.

aal1port.h
This file contains porting macros and other porting information.

aal1str.h
This file contains data structure declarations.

oextport.h
This file contains general OS porting information.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 21

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

 assigned
refer to

eps (3a,
nsions. If

e types
bstitute

Most val-
or exam-
e
 value of
e
ese con-

ce
PORTING STEPS

To port the AAL1gator II Driver to a specific environment, you will complete the steps in this section.

Step 1: Modify the gport.c File

Verify the implementations included in this file function correctly on the target system. By default, EnablePre-
emption() and DisablePreemption() use the PMC-Sierra OS Extensions to control task preemption. This
requires the actual porting to be done in OS Extensions.

Step 2: Modify the gport.h File

The gport.h file should not require porting, since it references OS Extensions for all OS-dependent operations. If
required, task-specific constants for the drivers can be changed here. For most installations, this file will need no
modifications.

Step 3: Port OS Extensions

The PMC-Sierra OS Extensions module encapsulates all OS-specific operations required by the AAL1gator Driver .
The PMC-Sierra OS Extensions provides operations for managing tasks, queues, timers, events, semaphores, mem-
ory, and debug logging. Queues, tasks, and semaphores are “named” in OS Extensions. A character string is
to each queue or task to uniquely identify it. For more information on the PMC-Sierra OS Extensions module,
“OS Extensions” on page 19.

You can port either the PMC-Sierra OS Extensions module or your own OS extensions. The following subst
3b, and 3c) describe what changes are required in each file if you choose to use the PMC-Sierra OS Exte
you choose to port your own OS extensions, you can skip step 3b.

Step 3a: Modify the types.h File

The types.h file defines all the system- and compiler-specific type definitions required by OS Extensions. Th
are identified by the number after the type. For example, UINT4 defines a 4-byte (32-bit) unsigned integer. Su
the compiler types that yield the desired types as defined in this file.

Step 3b: Modify the oextport.h File

This step is required only if you are using the PMC-Sierra OS Extensions module.

The oextport.h file contains the preprocessor constants used by each different class of OS Extensions calls.
ues defined in this file do not need to be changed, unless doing so eases the porting of the oextport.c file. F
ple, the constant EV_COND_OR is used by qx_receive() to indicate the wait condition is a logical OR of th
event flags. The value of the EV_COND_OR constant in oextport.h can be changed to represent the actual
this flag in the underlying OS call used in porting qx_receive(). This allows more efficient operation, since th
value of EV_COND_OR does not need to be translated to the value used by the actual OS call. Placing th
stants in this file gives the developer more flexibility in porting OS Extensions.

NOTE: The name of the constants in this file should not be changed since doing so would alter the interfa
to OS Extensions.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 22

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

ill be

nse.

arting

make it
nse for
Step 3c: Code the oextport.c File

The oextport.c file contains the code that implements the actual OS Extensions function calls. Most of the code in this
file will have to be ported specifically for the target OS. The AAL1gator II Driver uses a subset of the function calls
defined in the oextport.c and oextport.h files. If porting the AAL1gator II Driver, then the implementation of the
unused function calls can be removed to shorten the work required in porting. The oextport.c file contains comments
identifying which function calls are used by the AAL1gator II Driver. The following list summarizes the function
calls required by the AAL1gator II Driver and gives a brief description of each function call.

NOTE: If you choose to port your own OS extensions (that is, you are not using the PMC-Sierra OS Extensions
module), substitute code that implements your OS extension calls.

• Events

• evx_send - Send a set of events to a task.

• evx_receive - Wait for a set of events governed by a logical operation and a timeout.

• Memory

• mx_create - Allocate a memory block of a given size.

• mx_delete - Free a memory block allocated with mx_create.

• mx_set_value - Set a constant byte value in a memory region.

• Queues

• qx_create - Create a named queue with a given size, and optionally specify an event that w
sent to a task when a message arrives in the queue.

• qx_get_buffer - Allocate a message to send with qx_send.

• qx_ident - Return the queue identifier associated with a named queue.

• qx_receive - Receive a message sent to a queue with an optional timeout period.

• qx_return_buffer - Free a message after receiving it with qx_receive.

• qx_send - Send a message to a queue, and optionally specify a named queue for the respo

• Timers

• tmx_evevery - Send a set of events to a task at the specified interval.

• tmx_wkafter - Put the task to sleep for the specified time period.

• Tasks

• tx_mode - Set the current mode of the task.

• tx_start - Create and start a new task with the given stack size, priority, arguments, and st
point.

• Debug Logging

• x_trace - Send a message to the debug log with a key and debug level.

IMPORTANT! The interface to the PMC OS Extensions module must not change during porting. Do not modify the
function names, their parameters, or the constant names used by the functions while porting. Doing so will
more difficult to use future versions of the AAL1gator II Driver. If a parameter or constant does not make se
the target system, then leave it as defined and ignore it.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 23

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

uted as

dent

 of
e
viron-
l to pass

ge the
’s I/O

ent.

in the
Step 4: Modify the aal1port.c File

Determine the desired configuration of the Aal1DriverInit() function within the driver code, and change the
function accordingly. The Aal1DriverInit() function should basically initialize the GDDB entries for all the
devices. Some typical entries to be initialized are:

• The physical base address of the device.

• The default parameter values with which Aal1PowerOnInit() will initialize the devices.

• The interrupt vector number to be used by the device (if any) so the ISR defined by the driver is exec
a part of the interrupt servicing.

• The configuration parameters of the driver software.

For more information, refer to “Step 6: Assign Proper Values to the Constants in aal1port.h” on page 24. Chapter 3,
“AAL1gator II Driver Architecture”, starting on page 12 defines the Aal1DriverInit() function.

The Aal1StartTimer() function sends periodic events to the DCT to allow the DCT to perform time-depen
operations. The implementation of Aal1StartTimer() uses OS Extensions’ tmx_evevery() function to send
the periodic events to the DCT. Because it uses OS Extensions, the Aal1StartTimer() function should not
require modification during porting.

The Aal1SigFn() function is used to inform the DCT, if present, of events. The implementation
Aal1SigFn() uses OS Extensions’ qx_get_buffer() and qx_send() functions to send messages. Th
Aal1SigFn() function is designed to be called from an ISR external to the driver code. In certain OS en
ments, the functions that can be called from within an ISR can be very limited. In such cases, it may be usefu
all the signals to a dedicated task that will then signal the applications in an appropriate manner.

Step 5: Assign Proper Values to the Device Specification Constants in the aal1port.h
File

Modify the values of the constants relating to the system-level hardware configuration. For example, chan
DEV_BASE_ADDRESS constant to point to the proper absolute value memory address location for the device
ports. If memory-mapped I/O is not used, modify the IN and OUT macros accordingly.

Step 6: Assign Proper Values to the Constants in aal1port.h

Following are the constants defined in the aal1port.h file. Define them as specified by the hardware environm

#define AAL1_MAX_DEVICES
The number of AAL1gator devices present in the hardware module.
Default: 1

#define AAL1_CHIP_VERSION
The revision number of the AAL1gator device used in the hardware module.
Default: 121A

#define AAL1_INIT_VECTOR
The address of the hardware interrupt vector of the device. Change the default value
aal1port.h file to the system-specific value.
Default: 1
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 24

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Step 7: Define the Pre-processor Macros

Define the following macros in the Makefile. The following macro definitions will be affected by the endianness of
the hardware platform and the AAL1gator device type (for example, Application-Specific Integrated Circuit (ASIC)
or Electronically Programmable Logic Device (EPLD)).

BIG_ENDIAN
If the platform is a big endian platform, define this BIG_ENDIAN constant. If the platform is a lit-
tle endian platform, leave this macro undefined and the code will default to little endian.

Step 8: Replace Function Stubs in aal1port.c with Suitable Code

Following are the function stubs for hardware and OS/system initialization-specific functions defined in the
aal1port.c file. Replace these stubs with appropriate code.

Function Name: aal1DriverInit()

Purpose: To initialize the GDDB contents to proper values so power-on initialization can be performed
on the device, and so the device can configure itself.

To initialize the GDDB in the aal1port.c file, follow these steps:

a. Define the GDDB parameters for your system. Table 8 lists the GDDB parameters you should
define. Refer to the aal1srt.h file for the exact structure.

b. Initialize the additional GDDB parameters in Table 9 to NULL.

Table 8. GDDB Parameters to Define Appropriately for Your System

Field Description How to Define

aal1GDDB[n].DeviceName Indicates the device name
(for example, aal1).

 aal1

aal1GDDB[n].pu2HardwareBaseAddress Indicates the hardware
base address.

Define appropriately
for your system.

aal1GDDB[n].pu2MemoryAddress Indicates the memory start
address of the device.

Define appropriately
for your system.

aal1GDDB[n].pu4InterruptVector Indicates the hardware
interrupt vector.

Define appropriately
for your system.

aal1GDDB[n].u4ChipVersion Indicates the device
revision number.

Define appropriately
for your system.

Table 9. GDDB Parameters to Initialize to NULL

Field Description How to Define

aal1GDDB[n].ptDcb Points to the DCB. Initialize to NULL.

aal1GDDB[n].ptDdb Points to the DDB. Initialize to NULL.

aal1GDDB[n].u4DeviceState Indicates state 0. Initialize to NULL.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 25

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
c. Initialize the following GDDB device register parameters according to the functional needs of the
device on the hardware module.

Field: aal1GDDB[n].initialCfg.u4CompLneReg

Description: The values the driver assigns to the COMP_LIN_REG registers.

Choices: Refer to the COMP_LIN_REG register description in the AAL1gator II Long
Form Data Sheet.

Field: aal1GDDB[n].initialCfg.u4LineMode[8]

Description: The values the driver assigns to the LIN_STR_MODE registers.

Choices: Refer to the LIN_STR_MODE register description in the AAL1gator II Long
Form Data Sheet.

Function Name: aal1ResetChip

Purpose: To reset the AAL1gator II device pointed to by u4DeviceId.

Function Name: aal1WriteCommand

Purpose: To write to a microprocessor command register in the device. The value of the command regis-
ters and the device ID are passed as parameters to this function.

Function Name: aal1ReadCommand

Purpose: To read microprocessor command registers from the device. This function returns the value of
the command register. The device ID is passed as a parameter to this function.

Function Name: aal1InitInterruptVector

Purpose: To initialize the hardware interrupt vector for the device. The address of the interrupt vector
and the device ID are passed as parameters to this function. This function is required only for
ASIC chips.

Step 9: Define Types in the aal1port.h File
Following are the types defined in the aal1port.h file. Define them appropriately for the compiler used to build the
driver.

UINT1
Unsigned integer; one byte in length. Typically an unsigned character.

UINT2
Unsigned integer; two bytes in length.

UINT4
Unsigned integer; four bytes in length.

Step 10: Code and Install the Interrupt Handler

The ISR is expected to be executed when the device interrupts the processor. Program the operating system or the
CPU so the device ISR is executed once for every interrupt caused by the device. Typically, you can do this by cod-
ing an interrupt handler that appropriately handles the interrupt hardware of the CPU (for example, code an ISR that
issues acknowledgments to the interrupt controller hardware and masks lower priority interrupts), and then calls the
ISR provided by the driver. Then, at the end of the Aal1DriverInit() function, install this interrupt handler so it
executes when an interrupt for this device occurs.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 26

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

et OS’s
Step 11: Compile and Link the Source Code Files into Library/Object Modules

Generate the driver libraries by compiling and linking the Aal1SigFn() and the Aal1DriverInit() functions
with the other driver code modules. Follow the conventions required by the target OS to generate the driver. For
example, apply the proper compile and link switches. Then define additional modules as required by the targ
driver-interfacing conventions.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 27

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

PI
 to

ns,

o

poses.

on

, such
 given
Chapter 5
AAL1gator II Driver API

ABOUT THIS CHAPTER

This chapter is organized as follows:

• The first part of this chapter describes the abilities of the AAL1gator II Driver and the primary driver A
functions you need during normal device operation. The API functions listed in this section allow you
quickly and easily begin using the capabilities the driver offers. The AAL1gator II Driver manages the
following device functions:

• Initialization. For related API functions, refer to “Initializing All Internal Device Registers” on
page 29.

• Configuration. For related API functions, refer to “Mapping a Line or Channels in a Line to an
ATM VP/VC” on page 29.

• Processing Operations, Administration and Maintenance (OAM) cells. For related API functio
refer to “Processing OAM Cells” on page 38.

• Controlling the Synchronous Residual Time Stamp (SRTS). For related API functions, refer t
“Controlling the Synchronous Residual Time Stamp (SRTS)” on page 39.

• The second part of this chapter (“Statistics API Functions” starting on page 40) lists the statistics API
functions you may need to read and monitor statistics within the device for network management pur
Specifically, the API functions in this section are for the following purposes:

• “Obtaining Counts of Out-of-Sequence Cells or Cells with Uncorrectable SN CRCs” starting
page 40.

• “Obtaining Counts of Receive Underruns or Overruns” starting on page 42.

• “Obtaining Counts of AAL1 Cells Transmitted or Received” starting on page 43.

• “Obtaining Counts of Pointer Mismatches or Pointer Reframes” starting on page 44.

• “Obtaining Counts of Lost or Replaced AAL1 Cells” starting on page 45.

• “Obtaining Counts of Dropped or Misinserted AAL1 Cells” starting on page 46.

• The last part of this chapter lists the API functions you need to perform additional configuration tasks
as obtaining the maximum buffer depth for a given queue and setting the maximum buffer depth for a
queue. For these additional configuration functions, refer to “Obtaining or Setting the Maximum Buffer
Depth for a Queue” starting on page 47.

NOTE: Before any API function can be used, the driver must be initialized. The aal1DriverInit()
function in the aal1port.c file initializes the driver with default parameters. Refer to “Step 8: Replace
Function Stubs in aal1port.c with Suitable Code” on page 25.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 28

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

 other

hen
raf-
PRIMARY DRIVER API FUNCTIONS TO PERFORM AAL1GATOR FUNCTIONS

Initializing All Internal Device Registers

The initialization code in aal1DriverInit() initializes the device with the parameters defined in aal1port.c. The
initialization function also runs a self-test on the device to ensure the interface between the CPU and the AAL1gator
II device(s) is functional.

Please refer to “Step 8: Replace Function Stubs in aal1port.c with Suitable Code” on page 25 for more information
about initializing the GDDB contents to proper values so power-on initialization can be performed.

Mapping a Line or Channels in a Line to an ATM VP/VC

Figure 6 shows a high-level view of the relationships among the AAL1gator II device, the AAL1gator II Driver,
ATM devices, and an ATM network.

The application calls aal1ActivateLine or aal1ActivateChannel to define a mapping. One of the
following mapping functions returns a handle that can be used for further operations on this mapping.

• aal1getQhandle()

• aal1ActivateLine()

• aal1DeactivateLine()

• aal1ActivateChannel()

• aal1DeactivateChannel()

• aal1AssociateChannel()

• aal1DisassociateChannel()

• aal1EnableTxCond()

• aal1DisableTxCond()

• aal1EnableRxCond()

• aal1DisableRxCond()

NOTE: When the configuration of an existing mapping is changed, the traffic is affected. For example, w
aal1AssociateChannel is called to add more channels to an existing mapping, it affects the t
fic on the existing channels.

Figure 6. Relationships Among the AAL1gator II Driver, other ATM Devices, and an ATM Network

$$/�JDWRU�,,

'ULYHU

ATM Network

PM73121
$$/�JDWRU�,,

Queue Handler

From other
ATM

Devices
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 29

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
aal1GetQhandle

Description: Returns the queue handle for an active line or channel. Applications such as the Simple Network
Management Protocol (SNMP) agent can use this API function to obtain the queue handle for a
group of channels and use the handle for status/statistics functions.

Invocation: int aal1GetQhandle (u4DeviceId, UINT4 u4LineNo, UINT4 u4Channels)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
u4LineNo Specifies which line number to configure. Valid values are 0 to

(AAL1_MAX_LINES -1).
u4Channels Specifies the channel map.

Outputs: None.

Returns: Queue handle
AAL1_BAD_POINTER
AAL1_NO_TX_QUEUES
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 30

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
aal1ActivateLine

Description: Activates a T1 or an E1 line of the device in High-Speed Unstructured Data Format (UDF-HS)
mode. Returns a queue handle that will be used for future operations on the line.

Invocation: int aal1ActivateLine (UINT4 u4DeviceId, UINT4 u4LineNo,
tAal1TxRxParam *ptParam)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
u4LineNo Specifies which line number to configure. Valid values are 0 to

(AAL1_MAX_LINES -1).
ptParam Points to the parameters needed for the line configuration.

Outputs: None.

Returns: Queue handle
ERROR
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER
AAL1_INVALID_PARAM
AAL1_MAX_VCS_ERR
AAL1_NO_RX_QUEUES
AAL1_NO_TX_QUEUES

aal1DeactivateLine

Description: Deactivates the line that is in use, and frees the queue handle.

Invocation: int aal1DeactivateLine(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle for the line.

Outputs: None.

Returns: SUCCESS
ERROR
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER
AAL1_INVALID_PARAM
AAL1_INVALID_QUEUE
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 31

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
aal1ActivateChannel

Description: Maps the channel(s) of a T1 or an E1 line to a VP/VC. Enables full duplex mode after configuring
the mapping. Initializes transmit and receive, conditioned signaling and data values to 0, and
disables the conditioning. Initializes statistics counters to 0. Returns a queue handle that will be
used for future operations on the mapping.

Invocation: int aal1ActivateChannel (UINT4 u4DeviceId, UINT4 u4LineNo,
UINT4 u4Channels, tAal1TxRxParam *ptParam)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
u4LineNo Specifies which line number to configure. Valid values are 0 to

(AAL1_MAX_LINES -1).
u4Channels Identifies the bit map of the channel(s). The Least Significant

Bit (LSB) is channel number 0.
ptParam Points to the parameters needed to configure the channel(s).

Outputs: None.

Returns: Queue handle
ERROR
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER
AAL1_INVALID_PARAM
AAL1_LINENO_VC_MISMATCH
AAL1_MAX_VCS_ERR
AAL1_NO_QUEUES
AAL1_NO_RX_QUEUES
AAL1_NO_TX_QUEUES
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 32

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

n
T, dis-
fer to
e

s
aal1EnhancedActivateChannel
Description: Maps the channel(s) of a T1 or an E1 line to a VP/VC. Enables full duplex mode after configuring

the mapping. Initializes transmit and receive, conditioned signalling and data values to 0, and dis-
ables the conditioning. Initializes statistics counters to 0. Returns a queue handle that will be used
for future operations on the mapping. In addition to the abilities of the aal1ActivateChannel func-
tion (refer to “aal1ActivateChannel” on page 32), this aal1EnhancedActivateChannel functio
allows the user, at connection setup, to configure the maximum buffer depth, define the CDV
able the SN processing, define the partial cell size, and define the SN configuration (re
Table 7 on page 18). When ptEnhanced is equal to NULL, this function operates the same as th
aal1ActivateChannel .

Invocation: int aal1EnhancedActivateChannel(UINT4 u4DeviceId, UINT4 u4LineNo,
UINT4 u4Channels, tAal1TxRxParam *ptParam,
taal1EnhancedParam *ptEnhanced)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are 0 to

(AAL1_MAX_DEVICES - 1).
u4LineNo Specifies which line number to configure. Valid values are 0 to

(AAL1_MAX_LINES -1).
u4Channels Identifies the bit map of the channel(s). The Least Significant Bit (LSB) i

channel number 0.
ptParam Points to the parameters needed to configure the channel(s).
ptEnhanced Points to the enhanced parameters used to configure the channel(s).

Outputs: None.

Returns: Queue handle
ERROR
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER
AAL1_INVALID_PARAM
AAL1_LINENO_VC_MISMATCH
AAL1_MAX_VCS_ERR
AAL1_NO_QUEUES
AAL1_NO_RX_QUEUES
AAL1_NO_TX_QUEUES
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 33

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
aal1DeactivateChannel

Description: Deactivates the channel(s) on a line that is(are) in use. Frees the queue handle.

Invocation: int aal1DectivateChannel(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle for the channel(s) to be deactivated.

Outputs: None.

Returns: SUCCESS
ERROR
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER

AAL1_INVALID_PARAM
AAL1_INVALID_QUEUE
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 34

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
aal1AssociateChannel

Description: Associates more channels to an existing mapping. After configuring the mapping, enables it. Uses
the configuration of existing channels to associate the new channels.
This function may affect traffic on the existing channels.

Invocation: int aal1AssociateChannel (UINT4 u4DeviceId, int qHandle,
UINT4 u4Channels)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

associated with an existing VP/VC mapping.
u4Channels Specifies the bit map of additional channel(s). The LSB is

channel number 0.

Outputs: None.

Returns: SUCCESS
ERROR
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER
AAL1_INVALID_MODE
AAL1_INVALID_PARAM
AAL1_NO_TX_QUEUES

aal1DisassociateChannel

Description: Disassociates already mapped channels from an existing mapping. After configuring the mapping,
enables it. If all channels are disassociated from the mapping, the mapping will not be enabled but
the queue handle will remain available for future mapping.

Invocation: int aal1DissociateChannel (UINT4 u4DeviceId, int qHandle,
UINT4 u4Channels)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

disassociated with an existing VP/VC mapping.
u4Channels Specifies the bit map of the channel(s) to be disassociated. The

LSB is channel number 0.

Outputs: None.

Returns: SUCCESS
ERROR
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER
AAL1_INVALID_MODE
AAL1_INVALID_PARAM
AAL1_NO_TX_QUEUES
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 35

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
aal1EnableTxCond

Description: Enables transmit conditioning for an existing channel(s) to a VP/VC mapping.

Invocation: int aal1EnableTxCond(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) for which

the signaling will be changed.
Outputs: None.

Returns: SUCCESS
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER

aal1DisableTxCond

Description: Disables transmit conditioning for any existing channel(s) to a VP/VC mapping.

Invocation: int aal1DisableTxCond(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) for which

the signaling will be changed.
Outputs: None.

Returns: SUCCESS
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 36

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
aal1EnableRxCond

Description: Enables receive conditioning for an existing channel(s) to a VP/VC mapping.

Invocation: int aal1EnableRxCond(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) for which

the signaling will be changed.

Outputs: None.

Returns: SUCCESS
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER

aal1DisableRxCond

Description: Disables transmit conditioning for an existing channel(s) to a VP/VC mapping.

Invocation: int aal1DisableRxCond(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) for which

the signaling will be changed.

Outputs: None.

Returns: SUCCESS
AAL1_BAD_DEV_NO
AAL1_BAD_POINTER
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 37

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

vals.

n.

e

Processing OAM Cells

The AAL1gator II Driver can be used to send and receive OAM cells to and from the ATM network. Use the
following functions for those purposes:

• aal1TxOAMcell()

• aal1RxOAMcell()

aal1TxOAMcell

Description: Transmits an OAM cell. The payload of the cell is initialized in the initialization of the device.

Invocation: int aal1TxOAMcell (UINT4 u4DeviceId, void *pOAMhead)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
pOAMhead Points to the head of the OAM cell.

Outputs: None.

Returns: SUCCESS
ERROR
AAL1_BAD_DEV_NO
AAL1_INVALID_PARAM

NOTE: The aal1TxOAMcell function can fail for the following reasons:

• Cells are waiting in the two cell “slots”.

• The internal pacing function determines that too many OAM cells are sent in the last “n” inter
The number of cells is set at initialization by changing the AAL1_PACE_COUNT constant (in
aal1port.h).

aal1RxOAMcell

Description: Copies the received OAM cell to the passed buffer. The ISR or the DCT may call this functio

Invocation: int aal1RxOAMcell (UINT4 u4DeviceId, void *pOAMcell)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values ar

0 to (AAL1_MAX_DEVICES - 1).
pOAMcell Points to the area to which OAM cells will be copied.

Outputs: None.

Returns: AAL1_BAD_DEV_NO
AAL1_CRC_FAIL
AAL1_CRC_PASS
AAL1_INVALID_PARAM
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 38

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Controlling the Synchronous Residual Time Stamp (SRTS)

If the line is being used in Unstructured Data Format (UDF) mode, clock synchronization between the two ends of the
connection can be achieved using the SRTS enable feature. The following functions allow you to do this:

• aal1EnableSRTS()

• aal1DisableSRTS()

aal1EnableSRTS

Description: Enables SRTS for the given T1 or E1 line of the AAL1gator II device. SRTS can be enabled only if
the line is in UDF mode.

Invocation: int aal1EnableSRTS(UINT4 u4DeviceId, UINT4 u4LineNo)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
u4LineNo Specifies which line number to configure. Valid values are 0 to

(AAL1_MAX_LINES - 1).

Outputs: None.

Returns: SUCCESS
AAL1_BAD_DEV_NO
AAL1_INVALID_PARAM

NOTE: As PMC-Sierra understands it, Bellcore will not license the SRTS patent to silicon manufacturers.
Instead, it is Bellcore’s desire to license the SRTS patent under a royalty arrangement only to equipment
manufacturers. The ATM Forum states that Bellcore must make this patent available under fair and
equitable conditions. Bellcore believes they are satisfying this requirement by offering the license to the
equipment manufacturers rather than to the silicon manufacturers.

aal1DisableSRTS

Description: Disables SRTS for the given T1 or E1 line of the AAL1gator II device.

Invocation: int aal1DisableSRTS(UINT4 u4DeviceId, UINT4 u4LineNo)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
u4LineNo Specifies which line number to configure. Valid values are 0 to

(AAL1_MAX_LINES - 1).

Outputs: None.

Returns: SUCCESS
AAL1_BAD_DEV_NO
AAL1_INVALID_PARAM
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 39

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual

e

 be
STATISTICS API FUNCTIONS

This section contains the API functions that you may need for network management or benchmarking purposes. For
example, for network management purposes, you may need to read and monitor different registers and different status
within the device, or you may need to benchmark the hardware by changing the defaults for the operational mode of
the device.

The AAL1gator II Driver compiles all statistics from the device. The AAL1gator II Driver periodically collects
statistics, and allows a higher layer to access these values using the following functions:

• aal1GetRIncorrectSn

• aal1GetRIncorrectSnp

• al1GetRecvUnderrun

• aal1GetRecvOverrun

• aal1GetPtrMismatch

• aal1GetTCellCount

• aal1GetRCellCount

• aal1GetRLostCellCount

• aal1GetRDroppedCellCount

• aal1GetRMisinsertedCellCount

The API functions use the handle returned by the AAL1gator II Driver when connections are set up.

Obtaining Counts of Out-of-Sequence Cells or Cells with Uncorrectable SN CRCs

aal1GetRIncorrectSn

Description: Obtains the number of AAL1 cells received out-of-sequence on a mapping.

Invocation: int aal1GetRIncorrectSn(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values ar

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to

queried.

Outputs: None.

Returns: Number of AAL1 cells received out-of-sequence.
ERROR
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 40

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
aal1GetRIncorrectSnp

Description: Obtains the number of AAL1 cells received with an uncorrectable sequence number Cyclic
Redundancy Check (CRC).

Invocation: int aal1GetRIncorrectSnp(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.

Outputs: None.

Returns: Number of AAL1 cells received with an uncorrectable sequence number CRC.
ERROR
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 41

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Obtaining Counts of Receive Underruns or Overruns

aal1GetRevcUnderrun

Description: Obtains the number of receive underruns on a mapping.

Invocation: int aal1GetRecvUnderrun(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.
Outputs: None.

Returns: Number of receive underruns.
ERROR

aal1GetRevcOverrun

Description: Obtains the number of receive overruns on a mapping.

Invocation: int aal1GetRecvOverrun(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.

Outputs: None.

Returns: Number of receive overruns.
ERROR
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 42

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Obtaining Counts of AAL1 Cells Transmitted or Received

aal1GetTCellCount

Description: Obtains the number of AAL1 cells transmitted on a mapping.

Invocation: int aal1GetTCellCount(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) be

queried.

Outputs: None.

Returns: Number of AAL1 cells transmitted.
ERROR

aal1GetRCellCount

Description: Obtains the number of AAL1 cells received on a mapping.

Invocation: int aal1GetRCellCount(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.
Outputs: None.

Returns: Number of AAL1 cells received.
ERROR
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 43

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Obtaining Counts of Pointer Mismatches or Pointer Reframes

aal1GetPtrMismatch

Description: Obtains the number of receive pointer mismatches on a mapping.

Invocation: int aal1GetPtrMismatch(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) be

queried.
Outputs: None.

Returns: Number of receive pointer mismatches.
ERROR

aal1GetRPtrReframeCount

Description: Obtains the number of AAL1 pointer reframes.

Invocation: int aal1GetRPtrReframeCount(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.
Outputs: None.

Returns: Number of AAL1 cells transmitted.
ERROR
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 44

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Obtaining Counts of Lost or Replaced AAL1 Cells

aal1GetRLostCellCount

Description: Obtains the number of AAL1 cells lost.

Invocation: int aal1GetRLostCellCount(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.

Outputs: None.

Returns: Number of AAL1 cells transmitted.
ERROR

aal1GetRReplacedCellCount

Description: Obtains the number of AAL1 cells replaced.

Invocation: int aal1GetRReplacedCellCount(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.
Outputs: None.

Returns: Number of AAL1 cells transmitted.
ERROR
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 45

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Obtaining Counts of Dropped or Misinserted AAL1 Cells

aal1GetRDroppedCellCount

Description: Obtains the number of AAL1 cells dropped.

Invocation: int aal1GetRDroppedCellCount(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.

Outputs: None.

Returns: Number of AAL1 cells dropped.
ERROR

aal1GetRMisinsertedCellCount

Description: Obtains the number of AAL1 cells misinserted.

Invocation: int aal1GetRMisinsertedCellCount(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are

0 to (AAL1_MAX_DEVICES - 1).
qHandle Specifies the queue handle of the existing channel(s) to be

queried.

Outputs: None.

Returns: Number of AAL1 cells misinserted.
ERROR
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 46

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
ADDITIONAL CONFIGURATION FUNCTIONS

Obtaining or Setting the Maximum Buffer Depth for a Queue

aal1GetMaxBuf

Description: Obtains the maximum buffer depth for a given queue.

Invocation: int aal1GetMaxBuf(UINT4 u4DeviceId, int qHandle)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are 0 to

(AAL1_MAX_DEVICES - 1).

qHandle Specifies the queue handle of the existing channel(s) to be queried.

Outputs: None.

Returns: The maximum buffer depth.

ERROR

aal1SetMaxBuf

Description: Sets the maximum buffer depth for a given queue.

Invocation: int aal1SetMaxBuf(UINT4 u4DeviceId, int qHandle, UINT2 u2depth)

Inputs: Argument Description
u4DeviceId Identifies the particular AAL1gator II device. Valid values are 0 to

(AAL1_MAX_DEVICES - 1).

qHandle Specifies the queue handle of the existing channel(s) to be queried.

u2depth Specifies the maximum queue depth.

Outputs: None.

Returns: SUCCESS

ERROR
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 47

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
Appendix A
Error Codes

Table 10 lists the error codes that are used by the AAL1gator II Driver.

Table 10. AAL1gator II Driver Error Codes

Error Code Description

AAL1_BAD_DEV_NO Indicates an invalid device number was passed to this API function. (Defined by the
value INVALID_DEVICE_NO in the gport.h file).

AAL1_BAD_POINTER Indicates a bad pointer was passed to this API function.

AAL1_CRC_FAIL Indicates the CRC failed.

AAL1_CRC_PASS Indicates the CRC passed.

AAL1_INVALID_MODE Indicates this API function is not valid in this mode.

AAL1_INVALID_PARAM Indicates an invalid parameter was sent to an API. (Defined by the value
INVALID_VALUE in the gport.h file).

AAL1_INVALID_QUEUE Indicates an invalid queue handle was passed to this API function.

AAL1_LINENO_VC_MISMATCH Indicates the line number and VC do not correspond.

AAL1_MAX_VCS_ERR Indicates no more VCs are available.

AAL1_NO_QUEUES Indicates no more queues are available.

AAL1_NO_RX_QUEUES Indicates no more receive queues are available.

AAL1_NO_TX_QUEUES Indicates no more transmit queues are available.

ERROR Indicates a general error condition.
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 48

PM73121 AAL1gator II DriverPMC-Sierra, Inc.

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Preliminary
User’s Manual
CONTACTING PMC-SIERRA, INC.
PMC-Sierra, Inc.

105-8555 Baxter Place Burnaby, BC

Canada V5A 4V7

Tel: (604) 415-6000

Fax: (604) 415-6200

Document Information: document@pmc-sierra.com

Corporate Information: info@pmc-sierra.com

Application Information: apps@pmc-sierra.com

(604) 415-4533

Web Site: http://www.pmc-sierra.com
None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness, or
suitability for a particular purpose of any such information of the fitness or suitability for a particular purpose, merchantability, performance, compatibility
with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly
disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and
implied warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits,
lost business or lost data resulting from any use or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of
such damage.

© 1998 PMC-Sierra, Inc.

PMC-980622 (P2) Issue date: November, 1998

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

