Preliminary
uuuuuuuuuu j 7~
r \ X PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

PM73121

AAlLlgator Il DRIVER

EIGHT LINK CIRCUIT EMULATION
SERVICE ON A CHIP DRIVER

USER'S MANUAL

Preliminary
Issue 2: November 1998

RR

Preliminary

User’s Manual I
r :r\A‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

AALlgator Il is a trademark of PMC-Sierra, Inc.
UNIX is a registered trademark of X/Open Company Limited.
Windows is a trademark of Microsoft Corporation.

All other brand or product names are trademarks
of their respective companies or organizations.

NOTE:The PM73121 AAL1gator Il device contains SRTS logic for which
Bellcore holds the patent. Please refer to the NOTE on page 39 for
more information regarding Bellcore’s SRTS patent.

Copyright © 1998 PMC-Sierra, Inc.
All Rights Reserved

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Preliminary
User’s Manual

PMC-980622

1r\ A PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

Issue 2 Eight Link Circuit Service Emulation on a Chip Driver

Public Revision History

Issue Number Issue Date Details of Change
Issue 2 November 1998 | « Throughout manual, changed “AAL1gator” references to “AAL1gator II".
* Modified “What Should You Read?” on page 1
« Merged the Product Overview infthapter 2AALLgator || Driver Overview
¢ Added the sectiorHow the AALLgator Il Driver Interacts with Applications” on
page 6
* Modified Figure 2 on page 12
¢ Added the sectiohDS Extensions” on page 19
* Removed the subsections “State S4” and “State S5” from the seéttierDriver
States” starting on page 7
* Removed part 2 dgfigure 1 on page.8
* Moved data structures tohe Driver Data Structures” starting on page 15
« Added the AAL1 Enhanced Setup Parameter Structupeags 18
¢ AddedFigure 5 on page 20
« To“Step 3: Port OS Extensions” on page added the second paragraph.
« To“Step 3b: Modify the oextport.h File” on page, @dded the first paragraph.
e To“Step 3c: Code the oextport.c File” on page added the NOTE.
« Modified text in IMPORTANT note opage 23
* Added the return8AL1_LI NENO VC M SMATCH andAAL1_NO QUEUES to
the function‘aallActivateChannel” on page 32
¢ Combined the Error Codes Common to All PMC Drivers table and the Error C
Unique to the AAL1lgator Il Driver into one tabléable 10 on page 4®eleted
many error codes from table that are not applicable.
e InTable 10 on page 4@orrectedMAL1_BAD DEVI CE_NOto be
AAL1 BAD DEV_NO
¢ Added the API functionsaallEnhancedActivateChannel” on page 33
“Additional Configuration Functions” on page ,4and“aallSetMaxBuf” on
page 47
Issue 1 July 1998 Document created.

odes

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Preliminary

User’s Manual j FI
r r\ A 3 PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver
CONTENTS
Chapter 1
AboutthisManual. 1
o0 0L 1
RE I ONCES o 1
What Should YOU Read?o 1
Typographical ConventionsUsed inthisManual i e 2
Definitions of AcronymsUsed inthisManual i e 2
Chapter 2
AALZlgator Il Driver OVerview, 4
ADOUL thiS G ey . . . oo e 4
Overview of SOftware FEatUreS e e e e e e 4
Performing DiagnostiCsot 4
Performing Initialization FUNCLIONS e e e e e e 4
Configuring the Devicewith System Defaults. e 5
Providing APISTOr DeVICE OpEration.ottt et e e e e e 5
Managing EVeNtSo e 5
COllECting StatiStICS o i ettt e 5
How the AAL1gator Il Driver Interactswith Applications. i e e 6
Direct FUNCLION Callso o 6
Callback FUNCHIONSottt e e e e e e e e e 6
Asynchronous Event Notification. e e 6
THE DIV SEaES oot e 7
State SO (Power-On Initidlization State). oot e 9
State S1 (PoOwer-On Self Test State).ot e e e 9
State S2 (Final System Initialization State)t 10
State S3 (Operational State)ottt e 10
RE-ENIrANCY |SSUBS oo e e 11
Chapter 3
AALlgator Il Driver Architecture. 12
ADOUL thiS Chater . . . oo 12
AALLGAOr [DIiVEr DESION .« . .ottt et e e 12
TheDevice Driver Library (DDL)ot e e e e e 13
The Driver Restart and Reinitialization Functions (DRRS). i i 13
The Driver Control FUNCLiONS (DCFS).ot e e e e e e e 14
The Device Driver Operations (DD OS) oottt e e e e e e e 14
The Driver Diagnostic FUNCtIONS (DD GS). v v ittt et e e et e e e 14
TheDevice Control Task (DCT) . ..ottt e e e e e e e e e e e e e 14
The Interrupt Service Routine (ISR).ot e e e e e e e 14
The Driver Data SITUCLUIES. oot e e e e e e e e e e e e e e e e et et 15
Global Device Driver Database (GDDB)ot ittt 15
Device Control BIOCK (DCB) ... c ittt e e e e e e e 16

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE iv

Preliminary

User’s Manual j FI
r r\ A \ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver
Device DataBIock (DDB).ottt e e 17
AALL Setup Parameter SITUCLUNE oottt e e e e e e e e e 18
AALL Enhanced Setup Parameter Structure.t e 18
OS EXIENSIONS. . . o oo ittt et e e e e e e e e e e e e 19
Chapter 4
Porting Guidelines e 20
ADOUL thiS Cater . . . o oo 20
How the Source CodeisOrganized.ottt e e e e e 20
POrtiNG SIS . . .o 22
Step 1: Modify thegport.C File. 22
Step 2: Modify thegport.h File. e 22
Step 3: POrt OS EXIENSIONS. . . . oottt e 22
Step 3a: Modify thetypesh File 22
Step 3b: Modify theoextport.h File. 22
Step 3c: Codethe 0extport.C File.o 23
Step 4: Modify theaal lport.C File 24
Step 5: Assign Proper Values to the Device Specification Constantsintheaal lport.hFile 24
Step 6: Assign Proper Valuesto the Constantsinaaldporth. 24
Step 7: Definethe Pre-processor MaCrOS oottt e et e e e e et et i 25
Step 8: Replace Function Stubsin aallport.c with SuitableCode i 25
Step 9: Define Typesintheaallport.h File e 26
Step 10: Code and Install the Interrupt Handler e 26
Step 11: Compile and Link the Source Code Filesinto Library/ObjectModules 27
Chapter 5
AALZlgator Il Driver APl 28
ADOUL thiS Chater . . . oo 28
Primary Driver APl Functionsto Perform AAL1gator FUNCLiONS. e 29
Initializing All Internal Device REQISIErS.ot e e e e 29
Mapping aLineor ChannelsinalLinetoan ATM VPIVC e 29
aallGetQhandle. 30
BAl LA CHVAEL INEo 31
BAlADEACHIVALELING oo 31
aallActivateChannel 32
aallEnhancedActivateChannel 33
aadllDeactivateChannel 34
aal1ASSOCiateChannEl 35
aallDisassociateChannel o 35
BAl1ENabIETXCONA . . .o 36
Bl ADISAbIETXCONA o 36
BAl1ENabIERXCON 37
Bl ADISADIERXCONM. o 37
Processing OAM CellS. . ..o 38
BAl ATXOAMECENL . . 38
Al ARXOAMCE . . 38

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE Vv

Preliminary

User’s Manual I
r : r\ 4 PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver
Controlling the Synchronous Residual Time Stamp (SRTS)ot e 39
Al IENAD SR T S . o 39
Al IDiSAD SR T S, . . oo 39
StatisticsS API FUNCLIONS. oo e e e e e e e e 40
Obtaining Counts of Out-of-Sequence Cells or Cellswith Uncorrectable SNCRCs 40
BAl LGEtRINCOITECISN ottt et e e e e e 40
3l LGB RINCOI B SN . . . ottt et e 41
Obtaining Counts of Receive UnNderruns or OVEITUNSot ittt et it e i e 42
BAl1GEtREVCUNEITUN o e e e e e e e e e e e 42
BAl1GEtREVCOVEITUN . . . o ottt et e e e e e e e e e e e e e e e e e e e 42
Obtaining Countsof AAL1 CelsTransmittedor Received. 43
BAl1GEtTCEICOUN . . e e e e e e 43
BAl1GEtRCEICOUNT . . . o 43
Obtaining Counts of Pointer Mismatchesor Pointer Reframes 44
aal1GetPtrMisSmatCh 44
aal 1GetRPLrReframeCouUNt 44
Obtaining Countsof Lost or Replaced AALL Cells. e 45
Bal1GEtRLOSICEICOUNL. o 45
aal1GetRReplacedCellCoUNt.o e 45
Obtaining Counts of Dropped or Misinserted AALLCells e 46
aal 1GetRDroppedCeal lCoUNt e 46
aal1GetRMisinsertedCellCOUNt.ot e e 46
Additional Configuration FUNCLIONS e e e e e e 47
Obtaining or Setting the Maximum Buffer DepthforaQueue 47
Al LGEtMaXBUL 47
aal LSE M aX BUT . . 47

Appendix A
Error Codes 48
Contacting PMC-Sierra, InC.. 49

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE Vi

Preliminary

User’s Manual 1
\ ‘ PMC Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver

LIST OF FIGURES

Figurel. State Transition Diagram of an AALLgator Il Driver 8
Figure2. AALZLgator II Driver ArChiteCtureo e e e 12
Figure 3. Relationship Between the GDDB, the DCB, andtheDDB 15
Figure4. Model of an AALlgator Il Device and its Associated AAL 1gator Il Driver 19
Figure5. AALLgator I Driver SoUrCe Fileso e e e 20
Figure 6. Relationships Among the AAL1gator Il Driver, other ATM Devices, and an ATM Network 29

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE Vii

Preliminary

User’s Manual 1
\ ‘ PMC Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Service Emulation on a Chip Driver
LIST OF TABLES

Tablel. ConventionsUsedinthisManual. e 2
Table2. Acronym DefinitioNS e 2
Table 3. Global Device Driver Database (GDDB)ot e e e e 16
Table4. Device Control BIOCK (DCB)ottt e e e e e e 16
Table5. DataTypesinthe Device DataBlock (DDB)ot e e 17
Table 6. DataTypesinthe AALL Setup Parameter Structure e 18
Table7. DataTypesinthe AAL1 Enhanced Setup Parameter Structure. ..., 18
Table 8. GDDB Parametersto Define Appropriately for Your System.o 25
Table9. GDDB Parametersto Initiadlize to NULL o e e 25
Table 10. AALILgator [Driver Error COUES oottt e e e e e 48

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE Viii

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Chapter 1
About this Manual

SCOPE

This user’s manual describes the software driver for the PMC-Sierra Eight Link Circuit Emulation Service on a Chip
device (the AAL1lgator H Driver).

REFERENCES
This manual references the following documents:

 ANSI/ISO 9899-1990C Programming Language standard (formerly, ANSI X3.159-1989).
¢ PMC-Sierra,PM73121 AAL1gator 11 Long Form Data Sheet (document number PMC-980620).

WHAT SHOULD YOU READ?

For the latest information about AAL1gator Driver issues...
Refer to the latest RELNOTES.TXT file included with the source code.

If you are an application programmer or system programmer. . .
ReadChapter 3“AALLgator Il Driver Architecture’, for a quick overview of how the driver oper-
ates. Then readhapter 5“AALLgator Il Driver API”, to learn about the API functions specific to
the AAL1gator Il device.

If you will be porting the driver. . .
ReadChapter 4“Porting Guidelines, for tips on compiling the driver on your host system, and
bringing it up on your target system.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 1

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

TYPOGRAPHICAL CONVENTIONS USED IN THIS MANUAL

Different fonts are used in this manual to help you understand what is explained. Table 1 describes how these differ-
ent fonts are used.

Table 1. Conventions Used in this Manual

Font Explanation Example
Italic Emphasis The driver isfully tested and debugged so your initial testing will
not involve both untested hardware and untested software.
Couri er Function names Codethe Si gFn() function.
or
Sample code #defi ne MEM FREE(a) xxx

DEFINITIONS OF ACRONYMS USED IN THIS MANUAL

Table 2 lists the acronyms used in this manual and their definitions.

Table 2. Acronym Definitions

Acronym Definition
AAL1 ATM Adaptation Layer 1
ANSI American National Standards Institute
AP Application Programming Interface
ASIC Application-Specific Integrated Circuit
CAS Channel Associated Signaing
CcCB Channel Control Block
CDbvV Cell Delay Variation
CDVT Cell Delay Variation Tolerance
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DCB Device Control Block
DCF Driver Control Function
DCT Device Control Task
DDB Device Data Block
DDG Driver Diagnostic Function
DDL Device Driver Library
DDO Device Driver Operation
DRR Driver Restart and Reinitialization Function
EPLD Electrically Programmable Logic Device
GDDB Globa Device Driver Database
ISR Interrupt Service Routine

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 2

Preliminary
User’s Manual

PMC-980622

Y [

PM73121 AAL1gator Il Driver

Issue 2

Eight Link Circuit Emulation Service on a Chip Driver

Table 2. Acronym Definitions (Continued)

Acronym Definition
LSB Least Significant Bit
OAM Operations, Administration, and Maintenance
0os Operating System
pid Process |dentifier
RAM Random Access Memory
ROM Read Only Memory
RTOS Red -Time Operating System
SN Sequence Number
SNMP Simple Network Management Protocol
SNP Sequence Number Protection
SRTS Synchronous Residual Time Stamp
UDF Unstructured Data Format
UDF-HS High-Speed Unstructured Data Format
VC Virtual Channel
VP Virtual Path

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 3

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Chapter 2
AAL1lgator Il Driver Overview

ABOUT THIS CHAPTER

This chapter provides an overview of the AAL 1gator Il Driver.

OVERVIEW OF SOFTWARE FEATURES

The AAL1gator |l Driver is a system-ready driver for the PM73121 AAL 1gator Il device from PMC-Sierra. The
AAL1lgator Il Driver is written in ANSI “C” language and is portable to any Operating System (OS) environment.
The AAL1lgator Il Driver offers a logical interface to the AAL1gator Il device, and eliminates the need to know the
device-specific functions and how to operate the device to achieve those functions. The AAL1gator Il Driver signifi-
cantly reduces the system integration time, since it has been tested with the AAL1gator Il device. The AAL1gator I
Driver performs diagnostics, sets up and clears AAL1 connections, monitors the device status, and accumulates sta-
tistics. A single AAL1gator Il Driver can handle multiple AAL1gator Il devices.

The following paragraphs detail some of the important AAL1gator Il Driver functions.

Performing Diagnostics

At startup, the AAL1gator Il Driver performs diagnostic tests on the AALlgator Il and the associated RAM. These
tests detect interface errors between the CPU and the AAL1gator Il. Specifically, the diagnostic software:

« Writes different patterns and reads them back to ensure the CPU-to-memory interface is functional.
¢ Writes patterns to detect RAM address aliasing errors.

e Writes values and reads them back from all device read/write registers to verify the CPU-to-AAL1gator Il
interface is functional.

Performing Initialization Functions

The AAL1gator Il Driver performs the following intialization functions:

« Device initialization - Some registers should be preprogrammed, based on the hardware architecture of the
target system.

e Self testing - Self testing includes testing on-chip RAM and associated external RAM.

« Interrupt Service Routine (ISR) installation - If the device supports an interrupt, the driver will supply an
interrupt handler and a place to install it during initialization. The AAL1gator Il Driver performs local
processing for interrupts and generates events to the higher layer task.

e Custom event handlers installation - The driver provides hooks into which you can supply calls to custom
event handlers to meet system requirements.

« Buffer allocation - Buffers requiring pre-allocation will be allocated at initialization time.

¢ Queue creation - Required queues are created.

e Task creation - If the driver's “sanity checks” are successful and the task exists for the driver, the driver will
create the task and send an initial test message to the task. If the message is received by the task, it will log a
message indicating successful startup. This process provides a checkpoint while you are porting the driver.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 4

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Configuring the Device with System Defaults

The AAL1gator |l Driver configuresthe AAL 1gator |l with certain defaults. These defaults are in the porting section
of the AAL 1gator Il Driver and can be easily changed. Examples of such default configuration data include:

e the line configuration

« the default size of the patrtially filled cell before sending the cell

e the default fill character

« the number of buffers associated for each queue

e the size of the Cell Delay Variation Tolerance (CDVT)

e the Virtual Paths (VPs) and the Virtual Channels (VCs) for each queue

After the diagnostic tests are complete, the AAL1gator Il Driver configures the AALlgator Il and its data structures
with those device values and prepares the device for real-time operation. Configures the system defaults for the
AAL1lgator Il (for example,).

Providing APIs for Device Operation

The AAL1gator Il Driver provides APIs to control the following AAL1gator Il operations:

e Setting up and clearing connections (a connection can be a VP or a VC). In structured mode, the API also
calculates the new structure size.

¢ Adding and removing x 64 channels into an ATM connection.
« Sending and receiving OAM cells, including a pacing function for transmitting OAM cells.

e Mapping T1/E1/T3 channels to ATM VCs. The AAL1lgator Il Driver offers API functions for the higher
layer software to map and unmap lines (unstructured mode) and channels (structured mode) to ATM VCs.

e Activating and deactivating ATM channels. The AAL1gator Il Driver offers API functions to activate and
deactivate ATM channels, retaining the 64 channel-to-ATM VC mapping (structured mode). The higher
layer software can use this mapping capability to monitor the Channel Associated Signaling (CAS). In
structured mode, the AAL1gator Il Driver contains API functions to add or remove additiréd
channels for an existing mapping.

Managing Events

While operating, the AAL1gator Il generates an interrupt when it receives an OAM cell. The AAL1gator Il Driver
processes the interrupt locally and then generates an event for the higher layer processes. Upon receiving this event,
the higher layer processes act on the OAM cell received. The AAL1gator Il Driver also monitors the receive overruns
and underruns on a connection, and offers APIs to read the number of overruns and underruns. The higher layer soft-
ware can use the overrun and underrun counts to determine whether or not to adjust the Cell Delay Variation (CDV)
configured for the connection setup during the connection definition time.

Collecting Statistics

The AAL1gator Il Driver collects the statistics that are relevant to the AAL1gator Il device operation and provides
these statistics in the form of APIs for the higher layer software. Statistics collection can be performed in response to
an interrupt from the device, or the device can be polled periodically. For statistical information, the driver accumu-
lates select hardware register counters into larger counters. These larger counters do not need to be read as often as
the corresponding hardware register counters.

From the AAL1gator Il data structures, the AAL1gator Il Driver retrieves statistics, such as the number of cells sent,
the number of cells received, the conditioned data cells sent on a VC, and overruns and underruns on a connection.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 5

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

The AAL1gator |1 Driver periodically monitors the status of errors (such as overruns and underruns), and accumu-
lates the occurrence of those events. The AAL 1gator |1 Driver uses the timer function in the OS Extensions (a well-
defined set of OS wrapper functions) to run a periodic accumulation timer. The AAL 1gator Il Driver contains APIs
for the higher layer software to read the values of those statistics.

HOW THE AAL1GATOR Il DRIVER INTERACTS WITH APPLICATIONS
The AAL 1gator |1 Driver interacts with the application layer in the following ways:

« The application invokes the driver via direct function calls (API functions). The driver then executes in the
context of the application, and returns various data as specified by the API.

¢ Callback functions provided by the application to the AAL1gator Il Driver DCT are to be installed into the
AAI1 task (aallport.c file) during porting. These functions will be used for event notifications by the DCT to
the application.

« Event notifications by the DCT to the application.

Direct Function Calls

The direct function calls are the API functions that are part of the Device Driver Library (DDL) and are available to
the application for a variety of actions. For example, the application uses direct function calls such as
Aal 1Act i vat eChannel (refer to“aallActivateChannel” on page pandAal 1Deact i vat eChannel (refer

to “aallDeactivateChannel” on page)3ar setting up and tearing down connections.

Callback Functions

These functions are provided by the application to the AAL1gator Il Driver. When the DCT receives a signal from
the ISR about the occurrence of a significant event, such as the reception of an OAM cell, it calls a function provided
by the application as a callback routine to inform the application of this routine. Within this callback routine, the
application can take whatever action the corresponding OAM cell requires.

Asynchronous Event Notification

Instead of using callback functions to notify the application layer of significant events, the DCT can also signal the
application. This signaling can occur in the form of an event notification or sending a message in a queue or any other
mechanism the user wants to employ. The signaling function used by the AAL1gator Il Baiv&Si gFn (refer to

“Step 4: Modify the aallport.c File” on page)2is a porting function and can be modified by the user to fit the sys-

tem messaging scheme.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 6

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

THE DRIVER STATES

The AAL1gator Il Driver can bein one of four states. These states function as checkpoints to verify the proper initial-
izations have occurred before calling the API functions, and to ensure the API functions are not called in the wrong
order. Before the driver can enter the next state, a function must verify the driver is in the correct state. The function
must then complete successfully so the driver can transition to the next state. The states are as follows:
e SO: Power-On Initialization State. Thal 1Power Onl ni t function checks for the SO state. If the SO state
exists and the function is successful, the state is changed to S1.
e S1: Power-On Self Test State. Thal 1Power OnSel f Test function checks for the S1 state. If the S1
state exists and the function is successful, the state is changed to S2.
e S2: Final System Initialization State. TAal 1Fi nal | ni t function checks for the S2 state. If the S2 state
exists and the function is successful, the state is changed to S3, which is the required state for most API
functions.

e S3: Operational State.

In normal conditions, the transition sequence between the states is as follows: SO followed by S1, followed by S2

(after permission from the management entity), followed by S3 (again, after permission from the management entity).

The driver is usually in the S3 state. Most API functions, such as transmit and receive operations on the device,

require the driver to be in the S3 operational statel-idsre 1 on page 8hows, the initial software of a system

should bring the driver to state S3 by making the following sequence of éalsiPower Onl nit();

Aal 1Power OnSel f Test () ; Aal 1Fi nal I ni t (). This sequence of calls is equivalenpfpen() in a UNIX/

DOS environment. The driver may exit this S3 state and enter any of the preceding states in case of abnormal condi-
tions (such as system hang-up, and restart/reset) or during a system reconfiguration phase.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 7

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Figure 1 shows the driver states. The driver is assumed to be in the SO state at power-up.

Power-On S2
Initialization
* Final
Aal 1Power Onl nit () Initialization

Aal 1Fi nal I nit()

F
T
S3

Power-On Self
Test

v

Aal 1Power OnSel f Test () l
v
o Any Other API
Re-initialize Function
F ! !
T Aal 1Driverlnit() API()

F = False

S0: Power-On Initialization State
S1: Power-On Self Test State

S2: Final System Initialization State
S3: Operational State

'
w

Figure 1. State Transition Diagram of an AAL1gator Il Driver

The driver functions as a simple state machine. The events of interest are:
* Power-up.
e Operations the API function calls schedule for the device.
e Device interrupts.
« Timer events that schedule diagnostic checks and notify timeout conditions.

oo

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Preliminary
User’s Manual

PMC-980622

j ~1
r r\ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

State SO (Power-On Initialization State)

S0 is entered from the Aal 1Driverlnit() function. The driver (in S0) then proceeds to the
Aal 1Power Onl ni t () functionthat checksfor the SO state. If the SO state exists and the Aal 1Power Onl ni t ()
function is successful, the state is changed to S1.

NOTE: In the SO state, the OS kernel services may not yet be available. Also, the interrupt system may not

be fully initialized. Thus, the code executed in SO should:

« Use only stack or scratch pad RAM for any local variables.

« Do not expect the interrupt services to be available. (To avoid problems with an uninitialized inter-
rupt system, use status polling to recognize events of interest and disable interrupts from the
device.)

Aal 1Power Onl ni t () performs these steps:

1.

Determines if the results of the device’s power-on diagnostics (if available) are acceptable. If not
acceptableAal 1Power Onl ni t () exits with an error code.

Initializes the device to the configuration available in the ROM (Read Only Memory). Generally, you
can change this new configuration by recompiling. This configuration should be similar to the expected
configuration of the device when the system is operational. For example, if the device has a program-
mable clock rate, then initialize the device to the clock rate being used in the system.

NOTE: In this user’'s manual, “ROM” designates the data is contained in the initial load of the processor

3.

system. It may be in an electrical ROM, or may be a part of the boot-loaded code.

Changes the state to S1.

State S1 (Power-On Self Test State)

S1 is entered from theAal 1Power Onl nit() function. The driver (in S1) then proceeds to the
Aal 1Power OnSel f Test () function that checks for the S1 state. If the S1 state exists and the
Aal 1Power OnSel f Test () function is successful, the state is changed to S2.

NOTE: In the S1 state, the OS kernel services may not yet be available. Also, the interrupt system may not

be fully initialized. Thus, code executed in S1 should:

« Use only stack or scratch pad RAM for any local variables.

« Do not expect the interrupt services to be available. (To avoid problems with an uninitialized inter-
rupt system, use status polling to recognize events of interest and disable interrupts from the
device.)

Aal 1Power OnSel f Test () performs these steps:

1
2
3.
4
5

Temporarily changes the current chip configuration.
Prepares for the power-on self test.

Performs the power-on self test.

Stores the result.

If all tests pass, sets the state to S2. If all tests did not pass, sets the state to S1 and indicates the test(s)
that failed.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 9

Preliminary
User’s Manual

PMC-980622

j ~1
r r\ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

State S2 (Final System Initialization State)

S2 is entered from the Aal 1Power OnSel f Test () function. The driver (in S2) then proceeds to the
Aal 1Fi nal I nit () function that checksfor the S2 state. If the S2 state exists and the Aal 1Fi nal | nit () func-
tion is successful, the state is changed to S3.

NOTE: In the S2 state, the OS kernel services are assumed to be available. Also, the interrupt system is

assumed to be fully initialized. Thus, code executed in S2 can:
¢ Allocate memory.

» Create processes.

e Acquire timer handles.

« Expect the interrupt services to be available.

Aal 1Fi nal I nit () performs these steps:

PHASE A:

1. Allocates and initializes the DDB and the DCB for the driver.

2. Initializes the shadow registers from the values in the scratch pad RAM, and verifies the shadow regis-
ters against the values in the device registers.

3. Allocates the required memory buffer pools and timer handles.

4. Initializes the interrupt vectors. (This facility should be made available by the API of the driver for the
interrupt subsystem.)

5. Enables device interrupts.

PHASE B:

6. Completes the remaining power-on diagnostic tests. These tests include the tests that examine the inter-
rupt system, and those aspects of the device that can be effectively tested only in an environment
defined by an OS kernel (for example, those requiring timer services).

7. Configures the device for the operational state (S3). (By this time, the final system configuration should
be known to the management entities.) Optionally, this step can be skipped if it is known that the
power-on initialization is also the initialization for the operational state.

8. If both Phase A and B pass successfully, exits to state S3; else enters the error state and exits.

State S3 (Operational State)

In the S3 state, the API is fully available. This is the operational state for the driver.

Aal 1Driverlnit () performs these steps:

1.
2.

Re-initializes all data structures.

Changes state to SO.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 10

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

RE-ENTRANCY ISSUES

In a multitasking/multithreaded environment, such as existsin areal-time OS, the driver calls may be accidentally re-

entered. The driver does not check to prevent such re-entries. In a re-entrance, the driver’s data structures remain

intact; however, there still may be unpredictable consequences for the application. For example, if two applications
concurrently issue an API function call to set up the same Channel Control Block (CCB), the driver will return “OK”
for both applications, but only one of the applications will actually set up the specified CCB. To avoid such “race”
conditions, design the application so only DDO functions can be re-entered; non-DDO functions should not be re-
entrant. Single supervisory tasks (those that are per driver) should be able to invoke non-DDO functions after notify-
ing the other applications are using the DDOs.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 11

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Chapter 3
AAL1lgator Il Driver Architecture

ABOUT THIS CHAPTER

To help the application programmer design applications that use the AAL 1gator |1 Driver, this chapter presents gen-
eral information about how the driver operates. It does not provide the interna details and design of the driver.

AAL1GATOR Il DRIVER DESIGN

The AAL 1gator Il Driver provides a high-level interface to the AAL 1gator |1 device. Figure 2 shows the detailed
architecture of the AAL 1gator Il Driver, including the main data structures of the driver. It also shows the interac-
tion between the modules and their accesses to the data structures.

C Application)

A A
/ \ 4 \
AAL1gator lI° Driver / \
Device Driver Library (DDL)

Driver Restart and
Reinitialization
Functions (DRRs)

Driver Data Structures

Global Device
Driver Database
(GDDB)

Device Control
Task Device Driver

Operations (DDOs)

« Configuration
« Status
« Statistics

Device Control
Block (DCB)

Driver Control
Functions (DCFs)
Driver Diagnostic
\ Functions (DDGs) J

A\ 4 J
Device I/O +

Interrupt 7'\ 7'\ 7'\

Device Data
Block (DDB)

(00

A 4

A 4 A4 v OS Extensions
PM73121 PM73121 PM73121
AAL1gator II° AAL1gatorlic) ° " ° AAL1gator IlI° ¢
<4——)» Function Calls

<4 — » DataAccess
_> Asynchronous Event Notification

Figure 2. AAL1gator Il Driver Architecture

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 12

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

The driver isdivided into modules that perform different functions. These modules communicate with each other and
access the AAL1gator Il Driver data structure, as well as the AAL1gator Il device’s internal data structures to service
the APIs called by the application.

The AAL1gator Il Driver is divided into the following major functional blocks:
e The Device Driver Library (DDL)
e The Device Control Task (DCT)
e The Interrupt Service Routine (ISR)
e The driver data structures
The OS Extensions module is a software unit that is also provided with the AAL1gator Il Driver.

For any number of AALlgator Il devices controlled by the driver, there is only one instance of the DDL and the
DCT. The AAL1lgator Il devices are identified using an incremental number (starting at 0) caltediteeid. All

API functions require theevice_id as an input. The driver may also expect a timer signal so it can schedule certain
activites, such as updating counts and performing diagnostics.

The following sections explain the functional blocks of the AAL1gator Il Driver.

The Device Driver Library (DDL)

The DDL provides the applications with the functions that execute in the context of the calling application and pro-
vide the driver services. The DDL can be divided into the following major sets of API functions:

e The Driver Restart and Reinitialization Functions (DRRS)
¢ The Device Driver Operations (DDOSs)
e The Driver Control Functions (DCFs)
e The Driver Diagnostic Functions (DDGSs)
The following sections describe each of these DLL API functions.

The Driver Restart and Reinitialization Functions (DRRs)

The DRR helps the application initialize the AAL1gator Il Driver and the AAL1gator Il devices. The functions in the
DRR are explained in the following subsections.

AallPowerOnlnit

TheAal 1Power Onl ni t function initializes the device to a default configuration, as specified in the Global Device
Driver Database (GDDB), for that device.

NOTES:
e Aal 1Power Onl ni t does not require OS support.

e« The GDDB must be properly initialized before executied 1Power Onl ni t . The GDDB is ini-
tialized in theAal 1Dri ver | ni t function prior to callingdal 1Power Onl ni t .

AallFinallnit

The Aal 1Fi nal I ni t function allocates the system resources (the DCT, the DCB, the DDB, and the timer), and
generates the complete environment for the driver API (the DDO) to be operatmhaki nal | ni t optionally
initializes the device as specified by the initialization vector defined by the applicatibaFi nal | ni t assumes

the availability of OS services.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 13

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

The Driver Control Functions (DCFs)

Set Aal 1Pi d isa DCF that allows the application to specify the process identifier (the pid) the driver will pass to
Aal 1Si gFn() to signal events of interest. This allows communication between the AAL 1gator |l Driver ISR and
the AAL 1gator Il Driver task.

The Device Driver Operations (DDOs)

The DDOs are the API functions used by the applications predominantly to exercise the functions for which the
device exists. The API functions supported by the AAL1gator |l Driver are described in Chapter 5, AAL 1gator 1
Driver API, starting on page 28.

The Driver Diagnostic Functions (DDGs)

Aal 1Power OnSel f Test is ageneric DDG function that performs an exhaustive test on the various functions of
the device and returns the result of the tests.

The Device Control Task (DCT)

The AAL 1gator |1 Driver contains a DCT. For a single device type, there is one driver and one DCT. For example,
for three PM 73121 devices, thereis one driver with one DCT.
The DCT performs the following functions:

¢ Maintains the updated counts in the DDB corresponding to the counts maintained by a device.
¢ Receives the signals from the ISR and takes appropriate action on these signals.

e Schedules “sanity” checks on the device and the driver databases

« Signals events of interest to a predefined application task.

The ISR signals events to the DCT with thed 1Si gFn() function. This function uses OS Extensions queue func-

tions to send messages to the DCT. If queue send operations are not permitted inside the ISR, then an alternate OS-
specific solution may be needed.

Timer events are scheduled in the DCT to provide periodic sanity checks and database updating. These timer events
are accomplished with OS Extensions timer calls.

The DCT may signal significant events to a predefined application task. Since it is impossible to know what applica-
tion is used, the application signaling is left as a porting issue. A suggestion is to use OS Extensions calls for this
reporting since OS Extensions is already used by the DCT.

The Interrupt Service Routine (ISR)

The ISR performs the following functions:
e Traps hardware interrupts generated by the device.
« Acknowledges the interrupt source so the device deactivates the hardware interrupt signal.
e Signals the DCT of the interrupts.
e Updates the DCB and DDB.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 14

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

The Driver Data Structures

The following are the types of data structures associated with the driver:
e The Global Device Driver Database (GDDB)
e The Device Control Block (DCB)
e The Device Data Block (DDB)
e« The AAL1 Setup Parameter Structure
e« The AAL1 Enhanced Setup Parameter Structure

Figure 3 shows the relationship between the GDDB, the DCB, and the DDB.

DCB
/| DCB |
/| DCB, |
DCB
GDDB //Vl 2 |
®
e hd
IEEER |%|< /| DCB,.; |
| Gpos[1] |%<
| cpDB[2] DB
. N
. (/ \A| DDBy |
|__GDDB[n-1] |_o\|\ \| DDB, |
\A| DDB, |
*
[]
L]
\A| DDB,,_; |

Figure 3. Relationship Between the GDDB, the DCB, and the DDB
The following sections explain the global data structures.

Global Device Driver Database (GDDB)
Description: An array of structures, in which each structure contains the following information about each
device the driver controls and monitors:
e The physical address of the device.
e The current configuration details of the driver and the device (shadow registers).
e The data structures for internal driver use.
Data Type: AallGDDB (struct). This data type is declared in the aallstr.h file.
Identifier: gddb[AAL1_MAX_DEVI CES] . This array is declared in the aallini.c file.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 15

Preliminary
User’s Manual

PMC-980622

j ~1
r r\A PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

Issue 2

Eight Link Circuit Emulation Service on a Chip Driver

Table 3 lists and describes the data typesin the GDDB.

Table 3. Global Device Driver Database (GDDB)

Data Type Field Name Description

char sDevi ceNane[AAL1_NAME_LENGTH| Indicates the device name.

Ul NT2 *pu2Har dwar eBaseAddr ess Indicates the hardware base address of the
AALlgator Il.

Ul NT2 *pu2Menor yAddr ess Indicates the memory start address of the
AALlgator Il.

Ul NT4 u4dl nt errupt Vect or Indicates the hardware interrupt vector.

t Aal 11 nit Vect or initial Cfg Indicates the device initial configuration.

t Aal 1DCB *pt Dcb Points to the Device Control Block (DCB).

t Aal 1DCB *pt Ddb Points to the Device Data Block (DDB).

Ul NT4 u4Driver St ate Indicates the driver state (SO, S1, S2, or S3).

Ul NT4 u4cChi pVersi on Indicates the version of the device.

Device Control Block (DCB)

Description: For each device being controlled by the driver, thereis aunique DCB that contains the follow-
ing control information about the device:

e The backup configuration of the device for recovery and diagnostics purposes.

e The driver control information; for example, thiel to be passed thal 1Si gFn() and the
DCT's pid.

Data Type: DCB (struct). This data type is declared in the aallstr.h file.
Identifier: Aal 1GDDBJ device_id] . pt Dcb. This identifier is dynamically allocated.
Table 4 lists and describes the data types in the DCB.

Table 4. Device Control Block (DCB)

Data Type Field Name Description
Ul NT4 u4dFi I | Char Indicates the fill character for partially filled cells.
Ul NT4 u4DCTTaskl d Indicates the DCT task ID.
Ul NT4 udTimerld Indicates the timer |D for statistics collection.
Ul NT4 u4nVGCs Indicates the number of allocated VCs.
t Aal 11 ni t Vect or final Cfg Indicates the device’s final configuration.
taal 1MapStr chQuMap[AAL1_MAX_QUEUE] Indicates the channel-to-AAL1lgator Il queue mapping.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 16

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Device Data Block (DDB)

Description: Stores statistics for individual devices being monitored by the driver. There is one DDB for
each device being monitored.

Data Type: DDB (struct). The datatypeis declared in the aal 1str.h file.
Identifier: Aal 1Gddb[device id] . pt Ddb. Thisidentifier is dynamically allocated.
Table 5 lists and describes the data typesin the DDB.

Table 5. Data Types in the Device Data Block (DDB)

Data Type Field Name Description
Ul NT4 u4RecvUnder r un[AAL1_MAX_QUEUE] Receive underruns.

Ul NT4 u4RecvOverrun[AAL1_MAX_ QUEUE] Recelve overruns.

Ul NT4 ud4bPtr M smat ch[AAL1_MAX_QUEUE] Receive pointer mismatch realignments.
Ul NT4 udl nval i dSN[AAL1_MAX_QUEUE] Invalid sequence number.

Ul NT4 udFr cdUnder r un[AAL1_MAX_QUEUE] Forced underrun.

Ul NT4 udpbt r Sear ch[AAL1_MAX_QUEUE] Pointer search.

Ul NT4 u4BIl nkAl | ocThl [AAL1_MAX_QUEUE] Blank allocation table.

Ul NT4 udCel | RecvSt [AAL1_NMAX_QUEUE] Cell received status.

Ul NT4 u4Cel | Lost [AAL1_MAX_ QUEUE] Cell lost.

Ul NT4 u4TCel | Count [AAL1_NMAX_QUEUE] Transmit cell count.

Ul NT4 u4RCel | Count [AAL1_NMAX_QUEUE] Receive cell count.

Ul NT4 u4RDr oppedCel | Count [AAL1_MAX_QUEUE] | Receive dropped cell count.

Ul NT4 u4Rl ncorr ect Snp[AAL1_MAX_QUEUE] Receive incorrect Sequence Number Protection (SNP) count.
Ul NT4 U4RLost Cel | Count [AAL1_MAX_QUEUE] Receive lost or replaced cell count.

Ul NT4 U4RM si nserted [AAL1_MAX_QUEUE] Receive misinserted cells

Ul NT4 udbPtrParityErrs [AAL1_MAX_ QUEUE] Receive pointer parity errors

Ul NT4 U4RPt r Ref rameCount [AAL1_NMAX_QUEUE] Receive reframes count.

Ul NT4 u4TSuppr essedCel | Cnt [AAL1_MAX_QUEUE] | Transmit suppressed cell count.

Ul NT4 u4TCondCel | Count [AAL1_MAX_QUEUE] Transmit conditioning cell count.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 17

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

AAL1 Setup Parameter Structure

Description: Used to configure standard connections.
Data Type: taal 1TxRxParam (struct). The datatype is declared in the aal 1str.h file.

Table 6 lists and describes the data types in the AAL1 setup parameter structure used by the Aal1ActivateChannel
function (refer to “aallActivateChannel” on page Band the AallEnhancedActivateChannel function (refer to
“aallEnhancedActivateChannel” on pagg.33

Table 6. Data Types in the AAL1 Setup Parameter Structure

Data Type Field Name Description
Ul NT4 u4Si gnal l'i ng Signalling enable or disable.
Ul NT4 ud4CheckParity Parity enable or disable.
Ul NT2 u2TxVp Transmit VVP.
Ul NT2 u2TxVe Transmit VC.
Ul NT2 u2RxVp Receive VP.
Ul NT2 u2RxVc Receive VC.

AAL1 Enhanced Setup Parameter Structure

Description: Used to configure enhanced connections.
Data Type: taallLEnhancedParam (struct). The data type is declared in the aallstr.h file.

Table 7 lists and describes the data types in the AAL1 enhanced setup parameter structure used by the
AallEnhancedActiveChannel function (refer‘t@l1EnhancedActivateChannel” on pagg.33

Table 7. Data Types in the AAL1 Enhanced Setup Parameter Structure

Data Type Field Name Description
Ul NT2 u2MaxBuf Defines the maximum buffer depth in cells.
Ul NT2 u2CbhVT Defines the Cell Delay Variation Time (CDVT).
Ul NT2 u2Di sabl eSN Disables Sequence Number (SN) processing.
Ul NT2 u2Partial Cell Defines the partial cell sizein bytes.
Ul NT2 u2SNConfi g Defines the SN configuration.
1 Dropthefirst cell.
0 If the SNP s correct, recieve thefirst cell.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 18

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

OS Extensions

The PMC OS Extensions module is an operating system wrapper that is designed to provide a consistent interface to
the underlying OS. The PM C OS Extensions module provides the following functionalities:

* Message queues

e Periodic timers

« Event notification

e Task management

e Memory management

« Debug logging

The PMC OS Extensions module separates the RTOS porting into a separate module (see Figure 4). The porting sec-
tion calls the PMC OS Extensions module interface to perform RTOS actions. The only modifications required in the
porting section are for device 1/0 and system configuration.

AAL1gator lI° Driver

Driver . [Driver Porting \ 4 - PMC (or User)
L . N > .
Core Data Access _\ Section J 0S Extensions \ OS Extensions

Interface i

A System Calls

Device I/O
(RTOS }
\ 4

PM73121
AAL1gator Il

Figure 4. Model of an AAL1gator Il Device and its Associated AALlgator Il Driver

Using the PMC OS Extensions module with the AALlgator Il Driver is optional. Customers may replace the PMC
OS Extensions functions with their own OS-specific wrappers.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 19

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Chapter 4
Porting Guidelines

ABOUT THIS CHAPTER

This chapter describes the steps to port the AAL 1gator |1 Driver to a specific hardware and OS environment. These
steps include developing additional code and defining the various macros and preprocessor constants used by the
driver code. For easy porting, the changes required for the driver are grouped into two files: the Aal1port.h file, and
the Aallport.c file. Globa changes required by the AAL 1gator Drivers are in two separate files: the gport.h file and
the gport.cfile.

In addition to the driver porting files, OS extensions must be ported for the target OS. PMC-Sierra provides OS
Extensions, which is awrapper that provides a consistent interface to the OS and is used in the AAL1gator Il Driver

(for more information on the OS Extensions, refer to “OS Extensions” on page).SSince the AALlgator Il Driver

uses only a subset of the functions available in OS Extensions, porting only those functions is sufficient. Refer to
“Step 3: Port OS Extensions” starting on pagddtdnformation on porting OS Extension.

NOTE: PMC-Sierra recommends you aat modify the core files during porting.

HOW THE SOURCE CODE IS ORGANIZED

The code for the AAL1gator Il Driver is organized into the C language files listed below.

RootDiv

common

src/gport.c

inc/global.h

inc/gport.h

pm73121

src/aalldrv.c

src/aallini.c

src/aallmis.c

src/aallport.c

inc/aalldef.h

inc/aallextn.h

inc/aallport.h

inc/aallptr.h

osext

src/oextport.c
inc/oext.h

inc/types.h

inc/oextport.h

Figure 5. AAL1lgator Il Driver Source Files

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 20

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

The following header files are necessary for the AAL1gator |1 Driver API functionsto operate:

global.h
This file contains general declarations for the AAL 1gator Il Driver. Include this file before any
other files pertaining to the driver are included.

gport.h
Thisfile contains general porting information for the AAL1gator 11 Driver..

aal 1def.h
This file contains pre-processor constants for: error code values for the AAL 1gator Il Driver API,
registers numbersin the AAL 1gator |1 device, and default initialization values for the device.

aal lextn.h
This file contains ANSI function prototypes for each function in the driver's API.

aallport.h
This file contains porting macros and other porting information.

aallstr.h
This file contains data structure declarations.

oextport.h
This file contains general OS porting information.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 21

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

PORTING STEPS

To port the AAL 1gator |1 Driver to a specific environment, you will complete the stepsin this section.

Step 1: Modify the gport.c File

Verify the implementations included in this file function correctly on the target system. By default, Enabl ePr e-
enpti on() and Di sabl ePreenpti on() use the PMC-Sierra OS Extensions to control task preemption. This
requires the actual porting to be donein OS Extensions.

Step 2: Modify the gport.h File

The gport.h file should not require porting, since it references OS Extensions for al OS-dependent operations. If
required, task-specific constants for the drivers can be changed here. For most installations, this file will need no
modifications.

Step 3: Port OS Extensions

The PMC-Sierra OS Extensions modul e encapsul ates all OS-specific operations required by the AAL 1gator Driver .

The PMC-Sierra OS Extensions provides operations for managing tasks, queues, timers, events, semaphores, mem-

ory, and debug logging. Queues, tasks, and semaphores are “named” in OS Extensions. A character string is assigned
to each queue or task to uniquely identify it. For more information on the PMC-Sierra OS Extensions module, refer to
“OS Extensions” on page 19

You can port either the PMC-Sierra OS Extensions module or your own OS extensions. The following substeps (3a,
3b, and 3c) describe what changes are required in each file if you choose to use the PMC-Sierra OS Extensions. If
you choose to port your own OS extensions, you can skip step 3b.

Step 3a: Modify the types.h File

The types.h file defines all the system- and compiler-specific type definitions required by OS Extensions. The types
are identified by the number after the type. For example, UINT4 defines a 4-byte (32-bit) unsigned integer. Substitute
the compiler types that yield the desired types as defined in this file.

Step 3b: Modify the oextport.h File

This step is required only if you are using the PMC-Sierra OS Extensions module.

The oextport.h file contains the preprocessor constants used by each different class of OS Extensions calls. Most val-
ues defined in this file do not need to be changed, unless doing so eases the porting of the oextport.c file. For exam-
ple, the constant EV_COND_OR is useddwy r ecei ve() to indicate the wait condition is a logical OR of the

event flags. The value of the EV_COND_OR constant in oextport.h can be changed to represent the actual value of
this flag in the underlying OS call used in portipg_r ecei ve() . This allows more efficient operation, since the

value of EV_COND_OR does not need to be translated to the value used by the actual OS call. Placing these con-
stants in this file gives the developer more flexibility in porting OS Extensions.

NOTE: The name of the constants in this file shaadtlbe changed since doing so would alter the interface
to OS Extensions.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 22

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Step 3c: Code the oextport.c File

The oextport.c file contains the code that implements the actual OS Extensions function calls. Most of the code in this
file will have to be ported specifically for the target OS. The AAL1gator |l Driver uses a subset of the function calls
defined in the oextport.c and oextport.h files. If porting the AAL1gator Il Driver, then the implementation of the
unused function calls can be removed to shorten the work required in porting. The oextport.c file contains comments
identifying which function calls are used by the AAL1gator Il Driver. The following list summarizes the function
calls required by the AAL 1gator Il Driver and gives abrief description of each function call.

NOTE: If you choose to port your own OS extensions (that is, you are not using the PMC-Sierra OS Extensions
module), substitute code that implements your OS extension calls.
* Events
e evx_send - Send a set of events to a task.
e evx_receive - Wait for a set of events governed by a logical operation and a timeout.
* Memory
e nx_creat e - Allocate a memory block of a given size.
e nmx_del et e - Free a memory block allocated witk_cr eat e.
e nmx_set _val ue - Set a constant byte value in a memory region.
¢ Queues

e (gx_cr eat e - Create a named queue with a given size, and optionally specify an event that will be

sent to a task when a message arrives in the queue.
e qgx_get _buffer - Allocate a message to send with_send.
e qgx_ident - Return the queue identifier associated with a named queue.
e (Xx_receive - Receive a message sent to a queue with an optional timeout period.
« qgx_return_buffer - Free a message after receiving it vgjth r ecei ve.

« (gx_send - Send a message to a queue, and optionally specify a named queue for the response.

e Timers
e tnx_evevery - Send a set of events to a task at the specified interval.
e tnx_wkafter - Putthe task to sleep for the specified time period.

e« tx_node - Set the current mode of the task.

e tx_start - Create and start a new task with the given stack size, priority, arguments, and starting

point.
¢ Debug Logging
e X_trace - Send a message to the debug log with a key and debug level.

IMPORTANT! The interface to the PMC OS Extensions module must not change during portimgf.Badify the

function names, their parameters, or the constant names used by the functions while porting. Doing so will make it
more difficult to use future versions of the AAL1gator Il Driver. If a parameter or constant does not make sense for

the target system, then leave it as defined and ignore it.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 23

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Step 4: Modify the aallport.c File

Determine the desired configuration of the Aal 1Driver | nit () function within the driver code, and change the
function accordingly. The Aal 1Dri ver | nit () function should basically initialize the GDDB entries for all the
devices. Some typical entriesto beinitialized are:

e The physical base address of the device.
e The default parameter values with whishl 1Power Onl ni t () will initialize the devices.

e The interrupt vector number to be used by the device (if any) so the ISR defined by the driver is executed as
a part of the interrupt servicing.

* The configuration parameters of the driver software.

For more information, refer téstep 6: Assign Proper Values to the Constants in aallport.h” on pa@éagter 3
“AALZlgator Il Driver Architecture’; starting orpage 12defines thédal 1Dri ver I ni t () function.

TheAal 1St art Ti mer () function sends periodic events to the DCT to allow the DCT to perform time-dependent
operations. The implementation&él 1St art Ti mer () uses OS Extensionsirx_evever y() function to send

the periodic events to the DCT. Because it uses OS Extension&altiest art Ti mer () function should not
require modification during porting.

The Aal 1Si gFn() function is used to inform the DCT, if present, of events. The implementation of

Aal 1Si gFn() uses OS Extensiongjx_get buffer () andgx_send() functions to send messages. The

Aal 1Si gFn() function is designed to be called from an ISR external to the driver code. In certain OS environ-
ments, the functions that can be called from within an ISR can be very limited. In such cases, it may be useful to pass
all the signals to a dedicated task that will then signal the applications in an appropriate manner.

Step 5: Assign Proper Values to the Device Specification Constants in the aallport.h
File

Modify the values of the constants relating to the system-level hardware configuration. For example, change the
DEV_BASE_ADDRESS constant to point to the proper absolute value memory address location for the device’s 1/0O
ports. If memory-mapped I/O is not used, modify ltheandOUT macros accordingly.

Step 6: Assign Proper Values to the Constants in aallport.h

Following are the constants defined in the aallport.h file. Define them as specified by the hardware environment.

#defi ne AAL1_MAX_DEVI CES
The number of AAL1gator devices present in the hardware module.
Default: 1

#define AAL1_CHI P_VERSI ON
The revision number of the AAL1gator device used in the hardware module.
Default:121A

#define AAL1_I NI T_VECTOR
The address of the hardware interrupt vector of the device. Change the default value in the
aallport.h file to the system-specific value.
Default: 1

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 24

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Step 7: Define the Pre-processor Macros

Define the following macros in the Makefile. The following macro definitions will be affected by the endianness of
the hardware platform and the AAL1gator device type (for example, Application-Specific Integrated Circuit (ASIC)
or Electronically Programmable Logic Device (EPLD)).

Bl G_ENDI AN
If the platform is a big endian platform, define this Bl G_ENDI AN constant. If the platform is alit-
tle endian platform, leave this macro undefined and the code will default to little endian.

Step 8: Replace Function Stubs in aallport.c with Suitable Code

Following are the function stubs for hardware and OS/system initialization-specific functions defined in the
aal1port.c file. Replace these stubs with appropriate code.
Function Name: aal 1Driverlnit()

Purpose: Toinitialize the GDDB contents to proper values so power-on initialization can be performed
on the device, and so the device can configure itself.

To initialize the GDDB in the aal 1port.c file, follow these steps:

a. Definethe GDDB parameters for your system. Table 8 lists the GDDB parameters you should
define. Refer to the aal1srt.h file for the exact structure.

Table 8. GDDB Parameters to Define Appropriately for Your System

Field Description How to Define

aal 1GDDB[n] . Devi ceNane Indicates the devicename | aal 1
(for example, aal 1).

aal 1GDDB[n] . pu2Har dwar eBaseAddr ess | Indicates the hardware Define appropriately

base address. for your system.

aal 1GDDB[n] . pu2Menor yAddr ess Indicates the memory start | Define appropriately
address of the device. for your system.

aal 1GDDB[n] . pudl nt err upt Vect or Indicates the hardware Define appropriately
interrupt vector. for your system.

aal 1GDDB[n] . u4Chi pVer si on Indicates the device Define appropriately
revision number. for your system.

b. Initialize the additional GDDB parametersin Table 9to NULL.

Table 9. GDDB Parameters to Initialize to NULL

Field Description How to Define
aal 1GDDB[n] . pt Dcb Pointsto the DCB. Initialize to NULL.
aal 1GDDB[n] . pt Ddb Pointsto the DDB. Initialize to NULL.
aal 1GDDB[n] . u4Devi ceSt at e Indicates state 0. Initialize to NULL.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 25

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

c. Initialize the following GDDB device register parameters according to the functional needs of the
device on the hardware module.

Field: aal 1GDDB[n] .initial Cf g. u4ConmpLneReg
Description: The values the driver assigns to the COMP_LIN_REG registers.
Choices: Refer to the COMP_LIN_REG register description in the AAL1gator |1 Long
Form Data Sheet.
Field: aal 1GDDB[n] . i nitial Cf g. udLi neNode[8]
Description: The values the driver assignsto the LIN_STR_MODE registers.
Choices: Refer to the LIN_STR_MODE register description in the AAL1gator |l Long
Form Data Sheet.
Function Name: aal 1Reset Chi p
Purpose: Toreset the AAL 1gator Il device pointed to by u4Devi cel d.
Function Name: aal 1W it eCommand
Purpose: To writeto amicroprocessor command register in the device. The value of the command regis-

ters and the device I D are passed as parameters to this function.

Function Name: aal 1ReadCommand
Purpose: To read microprocessor command registers from the device. This function returns the value of

the command register. The device ID is passed as a parameter to this function.

Function Name: aal 1l ni t | nt er rupt Vect or

Purpose: To initialize the hardware interrupt vector for the device. The address of the interrupt vector
and the device ID are passed as parameters to this function. This function isrequired only for
ASIC chips.

Step 9: Define Types in the aallport.h File

Following are the types defined in the aal1port.h file. Define them appropriately for the compiler used to build the
driver.

Ul NT1
Unsigned integer; one byte in length. Typically an unsigned character.

Ul NT2
Unsigned integer; two bytesin length.

Ul NT4
Unsigned integer; four bytes in length.

Step 10: Code and Install the Interrupt Handler

The ISR is expected to be executed when the device interrupts the processor. Program the operating system or the
CPU so the device ISR is executed once for every interrupt caused by the device. Typically, you can do this by cod-
ing an interrupt handler that appropriately handles the interrupt hardware of the CPU (for example, code an ISR that
issues acknowledgments to the interrupt controller hardware and masks lower priority interrupts), and then calls the
ISR provided by the driver. Then, at the end of the Aal 1Dri ver | ni t () function, install thisinterrupt handler so it
executes when an interrupt for this device occurs.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 26

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Step 11: Compile and Link the Source Code Files into Library/Object Modules

Generate the driver libraries by compiling and linking the Aal 1Si gFn() andthe Aal 1Dri ver I nit () functions

with the other driver code modules. Follow the conventions required by the target OS to generate the driver. For

example, apply the proper compile and link switches. Then define additional modules as required by the target OS'’s
driver-interfacing conventions.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 27

Preliminary

User’s Manual 1
\ ‘ PMC Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Chapter 5
AAL1lgator Il Driver API

ABOUT THIS CHAPTER

This chapter is organized as follows:

« The first part of this chapter describes the abilities of the AAL1gator Il Driver and the primary driver API
functions you need during normal device operation. The API functions listed in this section allow you to
quickly and easily begin using the capabilities the driver offers. The AAL1gator Il Driver manages the
following device functions:

e Initialization. For related API functions, refer ‘tmitializing All Internal Device Registers” on
page 29

e Configuration. For related API functions, refer‘idapping a Line or Channels in a Line to an
ATM VP/VC” on page 29

« Processing Operations, Administration and Maintenance (OAM) cells. For related API functions,
refer to“Processing OAM Cells” on page 38

e Controlling the Synchronous Residual Time Stamp (SRTS). For related API functions, refer to
“Controlling the Synchronous Residual Time Stamp (SRTS)” on page 39

* The second part of this chaptesi@atistics API Functions” starting on page 4ists the statistics API
functions you may need to read and monitor statistics within the device for network management purposes.
Specifically, the API functions in this section are for the following purposes:

¢ “Obtaining Counts of Out-of-Sequence Cells or Cells with Uncorrectable SN CRCs” starting on
page 40

¢ “Obtaining Counts of Receive Underruns or Overruns” starting on page 42

¢ “Obtaining Counts of AAL1 Cells Transmitted or Received” starting on page 43

e “Obtaining Counts of Pointer Mismatches or Pointer Reframes” starting on page 44

e “Obtaining Counts of Lost or Replaced AAL1 Cells” starting on page 45

e “Obtaining Counts of Dropped or Misinserted AAL1 Cells” starting on page 46

e The last part of this chapter lists the API functions you need to perform additional configuration tasks, such
as obtaining the maximum buffer depth for a given queue and setting the maximum buffer depth for a given
qgueue. For these additional configuration functions, refedtdaining or Setting the Maximum Buffer
Depth for a Queue” starting on page 47

NOTE: Before any API function can be used, the driver must be initializedadh&Dr i ver | ni t ()
function in the aallport.c file initializes the driver with default parameters. Refétdp 8: Replace
Function Stubs in aallport.c with Suitable Code” on page 25

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 28

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

PRIMARY DRIVER APl FUNCTIONS TO PERFORM AAL1GATOR FUNCTIONS

Initializing All Internal Device Registers

Theinitialization codeinaal 1Dri ver | ni t () initializesthe device with the parameters defined in aal 1port.c. The
initialization function also runs a self-test on the device to ensure the interface between the CPU and the AAL 1gator
[l device(s) isfunctional.

Please refer to “Step 8: Replace Function Stubs in aallport.c with Suitable Code” on pafoe mere information
about initializing the GDDB contents to proper values so power-on initialization can be performed.
Mapping a Line or Channels in a Line to an ATM VP/VC

Figure 6 shows a high-level view of the relationships among the AAL1gator Il device, the AAL1gator Il Driver, other
ATM devices, and an ATM network.

Queue Handler

! PM73121 '
: AAL1gator IF '
Erom other /\ ATM Network
ATM ' .
Devices P ! AAL1gator IF . -
- ' d Driver ‘: »

Figure 6. Relationships Among the AAL1gator Il Driver, other ATM Devices, and an ATM Network

The application callsaal 1Act i vat eLi ne or aal 1Acti vat eChannel to define a mapping. One of the
following mapping functions returns a handle that can be used for further operations on this mapping.

e aal 1get Ghandl e()

e« aal 1Activateline()

e aal 1Deacti vat eLi ne()

e aal 1Acti vat eChannel ()

e aal 1Deacti vat eChannel ()
e aal 1Associ at eChannel ()
e« aal 1Di sassoci at eChannel ()
e aal 1Enabl eTxCond()

e aal 1Di sabhl eTxCond()
aallEnableRxCond()

e aal 1D sabhl eRxCond()

NOTE: When the configuration of an existing mapping is changed, the traffic is affected. For example, when
aal 1Associ at eChannel is called to add more channels to an existing mapping, it affects the traf-
fic on the existing channels.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 29

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

aallGetQhandle

Description: Returns the queue handle for an active line or channel. Applications such as the Simple Network
Management Protocol (SNMP) agent can use this APl function to obtain the queue handle for a
group of channels and use the handle for status/statistics functions.

Invocation: i nt aal 1Get Ghandl e (u4Devi celd, U NT4 u4Li neNo, Ul NT4 u4Channel s)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
u4Li neNo Specifies which line number to configure. Valid values are 0 to
(AAL1_MAX_LINES-1).
ud4Channel s Specifies the channel map.
Outputs: None.
Returns: Queue handle

AAL1_BAD PO NTER
AAL1_NO TX_QUEUES

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 30

Preliminary
User’s Manual

PMC-980622

j ~1
r r\ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

Issue 2

Eight Link Circuit Emulation Service on a Chip Driver

aallActivateLine

Description:

Invocation:

Inputs:

Outputs:

Returns:

Activates a T1 or an E1 line of the device in High-Speed Unstructured Data Format (UDF-HS)
mode. Returns a queue handle that will be used for future operations on the line.

i nt aal 1Acti vat eLi ne
t Aal 1TxRxPar am * pt Par am)

Argument
u4Devi cel d

udLi neNo
pt Par am

None.

Queue handle

ERROR

AAL1_BAD DEV_NO
AAL1_BAD PO NTER
AAL1_| NVALI D_PARAM
AAL1_MAX_VCS_ERR
AAL1_NO_RX_QUEUES
AAL1_NO TX_ QUEUES

aallDeactivateLine

Description:

Invocation:

Inputs:

Outputs:

Returns:

(Ul NT4 udDevi cel d, Ul NT4 udLi neNo,

Description

Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).

Specifies which line number to configure. Valid values are 0 to
(AAL1_MAX_LINES-1).

Points to the parameters needed for the line configuration.

Deactivatesthe line that is in use, and frees the queue handle.

i nt aal 1Deacti vat eLi ne(Ul NT4 u4Devi celd, int gHandl e)

Argument
u4Devi cel d

gHandl e

None.

SUCCESS

ERROR

AAL1_BAD DEV_NO
AAL1_BAD PO NTER
AAL1_| NVALI D_PARAM
AAL1_ | NVALI D_QUEUE

Description

Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).

Specifies the queue handle for the line.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 31

Preliminary
User’s Manual

PMC-980622

j ~1
r r\A PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

Issue 2

Eight Link Circuit Emulation Service on a Chip Driver

aallActivateChannel

Description:

Invocation:

Inputs:

Outputs:

Returns:

Maps the channel(s) of aT1 or an E1 lineto a VP/VC. Enables full duplex mode after configuring
the mapping. Initializes transmit and receive, conditioned signaling and data values to O, and
disables the conditioning. Initializes statistics counters to 0. Returns a queue handle that will be
used for future operations on the mapping.

i nt aal 1Acti vat eChannel

(Ul NT4 udDevi cel d, Ul NT4 u4Li neNo,

U NT4 udChannel s, tAal 1TxRxParam *pt Par am

Argument
u4Devi cel d

u4Li neNo
ud4Channel s
pt Par am
None.

Queue handle

ERROR

AAL1_BAD DEV_NO
AAL1_BAD PO NTER

AAL1_| NVALI D_PARAM

AAL1 LI NENO VC M SMATCH
AAL1_MAX_VCS_ERR
AAL1_NO _QUEUES

AAL1_NO _RX_QUEUES
AAL1_NO TX_ QUEUES

Description

Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).

Specifies which line number to configure. Valid values are 0 to
(AAL1_MAX_LINES-1).

Identifies the bit map of the channel(s). The Least Significant
Bit (LSB) is channel number O.

Points to the parameters needed to configure the channel(s).

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 32

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

aallEnhancedActivateChannel

Description: Maps the channel(s) of aT1 or an E1 lineto a VP/VC. Enables full duplex mode after configuring
the mapping. Initializes transmit and receive, conditioned signalling and data values to 0, and dis-
ables the conditioning. Initializes statistics counters to 0. Returns a queue handle that will be used
for future operations on the mapping. In addition to the abilities of the aal 1A ctivateChannel func-
tion (refer to “aallActivateChannel” on page jB2this aallEnhancedActivateChannel function
allows the user, at connection setup, to configure the maximum buffer depth, define the CDVT, dis-
able the SN processing, define the partial cell size, and define the SN configuration (refer to
Table 7 on page)8Whenpt Enhanced is equal taNULL, this function operates the same as the
aallActivateChannel .

Invocation: i nt aal 1EnhancedAct i vat eChannel (Ul NT4 u4Devi celd, U NT4 u4Li neNo,
U NT4 u4dChannel s, tAal 1TxRxPar am *pt Par am
t aal 1IEnhancedPar am * pt Enhanced)

Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator Il device. Valid values are 0 to
(AAL1_MAX_DEVICES - 1).
udLi neNo Specifies which line number to configure. Valid values are 0 to
(AAL1_MAX_LINES -1).
ud4Channel s Identifies the bit map of the channel(s). The Least Significant Bit (LSB) is
channel number O.
pt Par am Points to the parameters needed to configure the channel(s).
pt Enhanced Points to the enhanced parameters used to configure the channel(s).
Outputs: None.
Returns: Queue handle
ERROR

AAL1_BAD DEV_NO
AAL1_BAD PO NTER

AAL1_| NVALI D_PARAM
AAL1_LI NENO VC_M SMATCH
AAL1_MAX_VCS_ERR
AAL1_NO QUEUES
AAL1_NO_RX_QUEUES
AAL1_NO TX_QUEUES

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 33

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

aallDeactivateChannel

Description: Deactivates the channel(s) on alinethat is(are) in use. Frees the queue handle.
Invocation: i nt aal 1Decti vat eChannel (Ul NT4 u4Deviceld, int qHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle for the channel (s) to be deactivated.
Outputs: None.
Returns: SUCCESS
ERROR

AAL1_BAD DEV_NO
AAL1_BAD PO NTER
AAL1 | NVALI D_PARAM
AAL1_ | NVALI D_QUEUE

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 34

Preliminary
User’s Manual

PMC-980622

j ~1
r r\A PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

aallAssociateChannel

Description:

Invocation:

Inputs:

Outputs:

Returns:

Associates more channels to an existing mapping. After configuring the mapping, enables it. Uses
the configuration of existing channelsto associate the new channels.
This function may affect traffic on the existing channels.

i nt aal 1Associ at eChannel (Ul NT4 u4Deviceld, int gHandl e,
U NT4 u4Channel s)

Argument Description

u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).

gHandl e Specifies the queue handle of the existing channel(s) to be
associated with an existing VP/V C mapping.

ud4Channel s Specifies the bit map of additional channel(s). The LSB is
channel number O.

None.

SUCCESS

ERROR

AAL1_BAD DEV_NO
AAL1_BAD PO NTER
AAL1_ | NVALI D_MODE
AAL1 | NVALI D_PARAM
AAL1_NO TX_QUEUES

aallDisassociateChannel

Description:

Invocation:

Inputs:

Outputs:

Returns:

Disassociates aready mapped channels from an existing mapping. After configuring the mapping,
enables it. If all channels are disassociated from the mapping, the mapping will not be enabled but
the queue handle will remain available for future mapping.

i nt aal 1Di ssoci at eChannel (Ul NT4 u4Deviceld, int gHandl e,
U NT4 u4Channel s)

Argument Description

u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).

gHandl e Specifies the queue handle of the existing channel(s) to be
disassociated with an existing V P/V C mapping.

ud4Channel s Specifies the bit map of the channel(s) to be disassociated. The
LSB is channel number O.

None.

SUCCESS

ERROR

AAL1_BAD DEV_NO
AAL1_BAD PO NTER
AAL1_ | NVALI D_MODE
AAL1 | NVALI D_PARAM
AAL1_NO TX_QUEUES

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 35

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

aallEnableTxCond

Description: Enables transmit conditioning for an existing channel(s) to a VVP/V C mapping.
Invocation: i nt aal 1Enabl eTxCond(U NT4 udDevi cel d, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) for which
the signaling will be changed.
Outputs: None.
Returns: SUCCESS

AAL1_BAD DEV_NO
AAL1_BAD PO NTER

aallDisableTxCond

Description: Disables transmit conditioning for any existing channel(s) to a VP/V C mapping.

Invocation: i nt aal 1Di sabl eTxCond(Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) for which
the signaling will be changed.
Outputs: None.
Returns: SUCCESS

AAL1_BAD DEV_NO
AAL1_BAD PO NTER

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 36

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

aallEnableRxCond

Description: Enables receive conditioning for an existing channel(s) to a VP/V C mapping.
Invocation: i nt aal 1Enabl eRxCond(U NT4 udDevi cel d, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) for which

the signaling will be changed.
Outputs: None.
Returns: SUCCESS

AAL1_BAD DEV_NO
AAL1_BAD PO NTER

aallDisableRxCond

Description: Disables transmit conditioning for an existing channel(s) to a VVP/V C mapping.

Invocation: i nt aal 1Di sabl eRxCond(Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) for which

the signaling will be changed.
Outputs: None.
Returns: SUCCESS

AAL1_BAD DEV_NO
AAL1_BAD PO NTER

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 37

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Processing OAM Cells

The AAL1gator Il Driver can be used to send and receive OAM cells to and from the ATM network. Use the
following functions for those purposes:

e aal 1TxOAMcel | ()
* aal 1RxOAMcel | ()

aallTxOAMcell

Description: Transmits an OAM cell. The payload of the cell isinitialized in the initialization of the device.

Invocation: int aal 1TxOAMcel | (U NT4 u4dDevi celd, void *pOAMhead)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
pOAVhead Points to the head of the OAM cell.
Outputs: None.
Returns: SUCCESS
ERRCOR

AAL1_BAD DEV_NO
AAL1 | NVALI D_PARAM

NOTE: Theaal 1TxOAMcel | function can fail for the following reasons:
e Cells are waiting in the two cell “slots”.

e The internal pacing function determines that too many OAM cells are sent in the last “n” intervals.
The number of cells is set at initialization by changing&hkl PACE COUNT constant (in
aallport.h).

aallRxOAMcell

Description: Copies the received OAM cell to the passed buffer. The ISR or the DCT may call this function.

Invocation: int aal 1RxOAMcel | (U NT4 u4dDevi celd, void *pOAMcel |)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator Il device. Valid values are
0to (AAL1_MAX_DEVICES - 1).
pOAMcel | Points to the area to which OAM cells will be copied.
Outputs: None.
Returns: AAL1 BAD DEV_NO

AAL1_CRC FAI L
AAL1_CRC_PASS
AAL1_| NVALI D_PARAM

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 38

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Controlling the Synchronous Residual Time Stamp (SRTS)

If the lineisbeing used in Unstructured Data Format (UDF) mode, clock synchronization between the two ends of the
connection can be achieved using the SRTS enable feature. The following functions allow you to do this:

* aal 1Enabl eSRTS()
* aal 1Di sabl eSRTS()

aallEnableSRTS

Description: Enables SRTSfor the given T1 or E1 line of the AAL 1gator Il device. SRTS can be enabled only if
thelineisin UDF mode.

Invocation: i nt aal 1Enabl eSRTS(Ul NT4 u4Devi cel d, Ul NT4 u4Li neNo)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
u4Li neNo Specifies which line number to configure. Valid values are 0 to

(AALL_MAX_LINES-1).
Outputs: None.

Returns: SUCCESS
AAL1 BAD DEV_NO
AAL1 | NVALI D_PARAM

NOTE: AsPMC-Sierraunderstands it, Bellcore will not license the SRTS patent to silicon manufacturers.
Instead, it is Bellcore's desire to license the SRTS patent under aroyalty arrangement only to equi pment
manufacturers. The ATM Forum states that Bell core must make this patent available under fair and
equitable conditions. Bellcore believes they are satisfying this requirement by offering the license to the
equipment manufacturers rather than to the silicon manufacturers.

aallDisableSRTS

Description: Disables SRTS for the given T1 or E1 line of the AAL 1gator Il device.

Invocation: i nt aal 1Di sabl eSRTS(UI NT4 u4Devi cel d, Ul NT4 u4Li neNo)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
u4Li neNo Specifies which line number to configure. Valid values are 0 to

(AALL_MAX_LINES-1).
Outputs: None.

Returns: SUCCESS
AAL1 BAD DEV_NO
AAL1 | NVALI D_PARAM

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 39

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

STATISTICS API FUNCTIONS

This section contains the API functions that you may need for network management or benchmarking purposes. For
example, for network management purposes, you may need to read and monitor different registers and different status
within the device, or you may need to benchmark the hardware by changing the defaults for the operational mode of
the device.

The AAL 1gator Il Driver compiles all statistics from the device. The AAL1gator |l Driver periodically collects
statistics, and allows a higher layer to access these values using the following functions:

e aal 1Get Rl ncorrect Sn

e aal 1Get RIncorrect Snp

e al 1Get RecvUnderrun

e aal 1Get RecvOverrun

e aal 1GetPtrM smatch

e aal 1Get TCel | Count

¢ aal 1Get RCel | Count

e aal 1Get RLost Cel | Count

e aal 1Get RDr oppedCel | Count

e aal 1Get RM si nsert edCel | Count

The API functions use the handle returned by the AAL1gator Il Driver when connections are set up.

Obtaining Counts of Out-of-Sequence Cells or Cells with Uncorrectable SN CRCs

aallGetRIncorrectSn

Description: Obtains the number of AAL1 cells received out-of-sequence on a mapping.
Invocation: int aal 1Get RI ncorrect Sn(U NT4 u4dDevi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator Il device. Valid values are
0to (AAL1_MAX_DEVICES - 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of AAL1 cells received out-of-sequence.
ERROR

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 40

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

aallGetRIncorrectSnp

Description: Obtains the number of AAL1 cells received with an uncorrectable sequence number Cyclic
Redundancy Check (CRC).
Invocation: int aal 1Get RI ncorrect Snp(U NT4 u4Deviceld, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of AAL1 cellsreceived with an uncorrectable sequence number CRC.
ERRCOR

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 41

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Obtaining Counts of Receive Underruns or Overruns

aallGetRevcUnderrun

Description: Obtains the number of receive underruns on a mapping.
Invocation: i nt aal 1Get RecvUnderrun(U NT4 u4dDevi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of receive underruns.
ERRCOR

aallGetRevcOverrun

Description: Obtains the number of receive overruns on a mapping.
Invocation: i nt aal 1Get RecvOverrun(Ul NT4 u4Deviceld, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of receive overruns.
ERROR

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 42

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Obtaining Counts of AAL1 Cells Transmitted or Received

aallGetTCellCount

Description: Obtains the number of AAL 1 cellstransmitted on a mapping.

Invocation: i nt aal 1Get TCel | Count (Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) be
queried.
Outputs: None.
Returns: Number of AAL1 cellstransmitted.
ERROR

aallGetRCellCount

Description: Obtains the number of AAL 1 cellsreceived on a mapping.

Invocation: i nt aal 1Get RCel | Count (Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of AAL1 cellsreceived.
ERRCOR

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 43

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Obtaining Counts of Pointer Mismatches or Pointer Reframes

aallGetPtrMismatch

Description: Obtains the number of receive pointer mismatches on a mapping.
Invocation: int aal 1Get PtrM smat ch(Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) be
queried.
Outputs: None.
Returns: Number of receive pointer mismatches.
ERRCOR

aallGetRPtrReframeCount

Description: Obtains the number of AAL1 pointer reframes.
Invocation: i nt aal 1Get RPt r Ref ranmeCount (Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of AAL1 cellstransmitted.
ERRCOR

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 44

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Obtaining Counts of Lost or Replaced AALL1 Cells

aallGetRLostCellCount

Description: Obtains the number of AAL1 cellslost.

Invocation: i nt aal 1Get RLost Cel | Count (Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of AAL1 cellstransmitted.
ERROR

aallGetRReplacedCellCount

Description: Obtains the number of AAL1 cellsreplaced.

Invocation: i nt aal 1Get RRepl acedCel | Count (Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of AAL1 cellstransmitted.
ERRCOR

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 45

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Obtaining Counts of Dropped or Misinserted AAL1 Cells

aallGetRDroppedCellCount

Description: Obtains the number of AAL1 cells dropped.

Invocation: i nt aal 1Get RDr oppedCel | Count (Ul NT4 u4Devi cel d, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of AAL1 cells dropped.
ERROR

aallGetRMisinsertedCellCount

Description: Obtains the number of AAL1 cells misinserted.
Invocation: i nt aal 1Get RM si nsertedCel | Count (Ul NT4 u4Devi celd, int qHandl e)
Inputs: Argument Description
u4Devi cel d Identifies the particular AAL1gator |1 device. Valid values are
0to (AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be
queried.
Outputs: None.
Returns: Number of AAL1 cells misinserted.
ERROR

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 46

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

ADDITIONAL CONFIGURATION FUNCTIONS

Obtaining or Setting the Maximum Buffer Depth for a Queue

aallGetMaxBuf

Description: Obtains the maximum buffer depth for a given queue.
Invocation: i nt aal 1Get MaxBuf (Ul NT4 u4Devi celd, int gHandl e)
Inputs: Argument Description
u4Devi cel d Identifiesthe particular AAL1gator Il device. Vdid vaues are 0 to
(AAL1_MAX_DEVICES- 1).
gHandl e Specifies the queue handle of the existing channel(s) to be queried.
Outputs: None.
Returns: The maximum buffer depth.
ERROR

aallSetMaxBuf

Description: Sets the maximum buffer depth for a given queue.
Invocation: i nt aal 1Set MaxBuf (Ul NT4 u4Deviceld, int gHandl e, Ul NT2 u2depth)
Inputs: Argument Description
u4Devi cel d Identifiesthe particular AAL1gator Il device. Vdid vaues are 0 to
(AAL1_MAX_DEVICES-1).
gHandl e Specifies the queue handle of the existing channel(s) to be queried.
u2dept h Specifies the maximum queue depth.
Outputs: None.
Returns: SUCCESS
ERROR

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 47

Preliminary

User’s Manual j fl | |
‘ PMC-Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

Appendix A
Error Codes

Table 10 lists the error codes that are used by the AAL1gator |1 Driver.

Table 10. AAL1gator Il Driver Error Codes

Error Code Description

AAL1_BAD_DEV_NO Indicates an invalid device number was passed to this API function. (Defined by the
value | NVALI D_DEVI CE_NOin the gport.h file).

AAL1_BAD PO NTER Indicates a bad pointer was passed to this API function.

AAL1_ CRC FAI L Indicates the CRC failed.

AAL1_ CRC _PASS Indicates the CRC passed.

AAL1 | NVALI D_MODE Indicates this API function is not valid in this mode.

AAL1_| NVALI D_PARAM Indicates an invalid parameter was sent to an API. (Defined by the value
I NVALI D_VALUE in the gport.h file).

AAL1 | NVALI D_QUEUE Indicates an invalid queue handle was passed to this APl function.

AAL1 LI NENO VC M SMATCH Indicates the line number and VC do not correspond.

AAL1 MAX VCS ERR Indicates no more VCs are available.

AAL1 NO QUEUES Indicates no more queues are available.

AAL1 NO RX_ QUEUES Indicates no more receive queues are available.

AAL1 NO TX QUEUES Indicates no more transmit queues are available.

ERROR Indicates a general error condition.

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE 48

Preliminary

User’s Manual j)
\ PMC Sierra, Inc. PM73121 AAL1gator Il Driver

PMC-980622 Issue 2 Eight Link Circuit Emulation Service on a Chip Driver

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com

Corporate Information: info@pmc-sierra.com

Application Information: apps@pmc-sierra.com
(604) 415-4533

Web Site: http://www.pmc-sierra.com

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness, or
suitability for a particular purpose of any such information of the fitness or suitability for a particular purpose, merchantability, performance, compatibility
with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly
disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and
implied warranties of accuracy, completeness, merchantability, fithess for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits,
lost business or lost data resulting from any use or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of
such damage.

© 1998 PMC-Sierra, Inc.

PMC-980622 (P2) Issue date: November, 1998

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

