Features

- Exceptional Broadband Performance, 0.05-6.0 GHz
- Lower Loss: $\mathrm{Tx}=0.35 \mathrm{~dB}, \mathrm{Rx}=0.55 \mathrm{~dB} @ 3.8 \mathrm{GHz}, 20 \mathrm{~mA}$
- Higher Isolation: Rx-Tx = 21dB, Tx-Rx =26dB @ 3.8 GHz
- Higher RF Input Power $=8$ W C.W (Tx-Ant Port)
- Higher IIP3 $=65 \mathrm{dBm}$ (Tx-Ant Port)
- Lower EVM (OFDM): <1.0\% @ 8W Pinc, (Tx-Ant Port)
- Suitable for Higher Power WiMAX \& WiFi Applications
- Surface Mount 3mm MLP Package, RoHS Compliant

Description and Applications

The MA-COM MASW-000822-12770T is a SP2T Broadband, high linearity, common anode, PIN diode T/R switch for $0.05-6.0 \mathrm{GHz}$ applications, including WiMAX \& WiFi. The device is provided in industry standard 3 mm MLP plastic packaging. This device incorporates a PIN diode die fabricated with M/A-COM's patented Silicon-Glass HMIC ${ }^{\text {TM }}$ process. This chip features two silicon pedestals embedded in a low loss, low dispersion glass. The diodes are formed on the top of each pedestal. The topside is fully encapsulated with silicon nitride and has an additional polymer passivation layer. These polymer protective coatings prevent damage and contamination during handling and assembly.

This compact 3 mm MLP package, SP2T switch offers wideband $0.05-6.0 \mathrm{GHz}$ performance with excellent isolation to loss ratio for both Tx and Rx states. The PIN diode provides exceptional 8 W C.W. power handling coupled with 65 dBm IIP3 for maximum switch performance.

Absolute Maximum Ratings ${ }^{1}$

$@ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Absolute Maximum
Forward Current	I 100 mA I
Reverse Voltage (RF \& D.C.)	$\mathrm{I}-100 \mathrm{~V}$ I
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+175^{\circ} \mathrm{C}$
Tx Incident C.W. Power	$8 \mathrm{~W} \mathrm{C.W}$.
Tx Peak Incident Power	$20 \mathrm{~W}, 3 \mathrm{uS}$ P.W., 1% Duty
Mounting Temperature	$+235^{\circ} \mathrm{C}$ for 10 seconds

1. Exceeding these limits may cause permanent damage.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

Functional Diagram:

Common Anode Series PIN Diode Switch

3mm MLP Outline: OD-S 1277

Circuit Side View

PIN Configuration:

(Center Metal Area is RF, D.C., and Thermal Ground)

PIN	Function	PIN	Function
1	N/C	9	N/C
2	N/C	10	Rx
3	Tx	11	N/C
4	N/C	12	N/C
5	N/C	13	N/C
6	N/C	14	Ant
7	N/C	15	N/C
8	N/C	16	N/C

Ordering Information

Part Number	Package
MASW-000822-12770T	Tape and Reel

[^0]Visit www.macom.com for additional data sheets and product information.

Electrical Specifications @+25 ${ }^{\circ} \mathrm{C}$, Characteristic Impedance, Zo =50 Ω

Parameter	Symbol	Conditions	Units	Min	Typ	Max
$\mathrm{F}=2.3-2.7 \mathrm{GHz}$						
Insertion Loss, Rx	$\begin{aligned} & \text { Rx } \\ & \text { IL } \end{aligned}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB		0.52	0.70
Insertion Loss, Tx	$\begin{aligned} & \text { Tx } \\ & \text { IL } \end{aligned}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB		0.35	0.45
Isolation, Tx To Rx	$\begin{gathered} \mathrm{Rx} \\ \mathrm{ISO} \end{gathered}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \mathrm{Pinc}=0 \mathrm{dBm} \end{gathered}$	dB	27.0	29.5	
Isolation, Rx To Tx	$\begin{gathered} \text { Tx } \\ \text { ISO } \end{gathered}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc= } 0 \mathrm{dBm} \end{gathered}$	dB	22.5	24.5	
Tx Input Return Loss	$\begin{aligned} & \text { Tx } \\ & \text { RL } \end{aligned}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc= } 0 \mathrm{dBm} \end{gathered}$	dB		17	
Rx Input Return Loss	$\begin{aligned} & R x \\ & \text { RL } \end{aligned}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB		17	
$\mathrm{F}=3.3-3.8 \mathrm{GHz}$						
Insertion Loss, Rx	$\begin{aligned} & \text { Rx } \\ & \text { IL } \end{aligned}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB		0.55	0.75
Insertion Loss, Tx	$\begin{aligned} & \text { Tx } \\ & \text { IL } \end{aligned}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB		0.35	0.55
Isolation, Tx To Rx	$\begin{gathered} \mathrm{Rx} \\ \mathrm{ISO} \end{gathered}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \mathrm{Pinc}=0 \mathrm{dBm} \end{gathered}$	dB	24.5	26.5	
Isolation, Rx To Tx	$\begin{gathered} \text { Tx } \\ \text { ISO } \end{gathered}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc= } 0 \mathrm{dBm} \end{gathered}$	dB	19.5	21.5	
Tx Input Return Loss	$\begin{aligned} & \text { Tx } \\ & \text { RL } \end{aligned}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \mathrm{Pinc}=0 \mathrm{dBm} \end{gathered}$	dB		18	
Input Return Loss	$\begin{aligned} & \text { Rx } \\ & \text { RL } \end{aligned}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \mathrm{Pinc}=0 \mathrm{dBm} \end{gathered}$	dB		18	
$\mathrm{F}=4.9-5.9 \mathrm{GHz}$						
Insertion Loss, Rx	$\begin{aligned} & \text { Rx } \\ & \text { IL } \end{aligned}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ \mathrm{~mA}, \\ \mathrm{Pinc}=0 \mathrm{dBm} \end{gathered}$	dB		0.65	1.00
Insertion Loss, Tx	$\begin{aligned} & \text { Tx } \\ & \text { IL } \end{aligned}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \mathrm{Pinc}=0 \mathrm{dBm} \end{gathered}$	dB		0.4	0.85
Isolation, Tx To Rx	$\begin{gathered} \mathrm{Rx} \\ \mathrm{ISO} \end{gathered}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc= } 0 \mathrm{dBm} \end{gathered}$	dB	23.0	25.5	
Isolation, Rx To Tx	$\begin{gathered} \text { Tx } \\ \text { ISO } \end{gathered}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB	17.5	20.0	
Tx Input Return Loss	$\begin{aligned} & \mathrm{Tx} \\ & \mathrm{RL} \end{aligned}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \mathrm{Pinc}=0 \mathrm{dBm} \end{gathered}$	dB		18	
Rx Input Return Loss	$\begin{aligned} & \text { Rx } \\ & \text { RL } \end{aligned}$	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA}, \\ \text { Pinc }=0 \mathrm{dBm} \end{gathered}$	dB		18	

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Electrical Specifications @+25 ${ }^{\circ} \mathrm{C}$, Characteristic Impedance, Zo =50 Ω

Parameter	Symbol	Conditions	Units	Min	Typ	Max
Tx Input P0.2dB	$\begin{gathered} \text { Tx } \\ \text { IP0.2dB } \end{gathered}$	$\begin{gathered} \text { 3.5 GHz, Tx=+5.0 V@ +22mA, Rx }=+12 \mathrm{~V} @ 0 \mathrm{~mA} \\ \text { Tx To Antenna } \end{gathered}$	dBm		36	
Tx Input P1dB	Tx IP1dB	$\begin{gathered} \text { 3.5 GHz, } \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA} \\ \text { Tx To Antenna } \end{gathered}$	dBm		40	
Tx $2^{\text {nd }}$ Harmonic	$\begin{gathered} \text { Tx } \\ \text { 2Fo } \end{gathered}$	$\begin{gathered} 3.5 \mathrm{GHz}, \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{Pin}=+30 \mathrm{dBm} \end{gathered}$	dBc		68	
Tx $3^{\text {rd }}$ Harmonic	$\begin{gathered} \text { Tx } \\ \text { 3Fo } \end{gathered}$	$\begin{gathered} 3.5 \mathrm{GHz}, \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{Pin}=+30 \mathrm{dBm} \end{gathered}$	dBc		84	
Tx Input Third Order Intercept Point	$\begin{gathered} \text { Tx } \\ \text { IIP3 } \end{gathered}$	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{Pi}=+10 \mathrm{dBm}, \mathrm{~F} 1=3.500 \mathrm{GHz}, \mathrm{~F} 2=3.510 \mathrm{GHz} \end{gathered}$	dBm		65	
Tx C.W. Input Power	Tx Pinc	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=3.5 \mathrm{GHz} \end{gathered}$	dBm			39
Rx C.W. Input Power	Rx Pinc	$\begin{gathered} \mathrm{Rx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Tx}=+12 \mathrm{~V} @ 0 \mathrm{~mA} \\ \mathrm{~F}=3.5 \mathrm{GHz} \end{gathered}$	dBm			30
Tx RF Switching Speed	$\tau_{\text {RF }}$	$\begin{gathered} \text { (10-90\% RF Voltage) } \\ \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA} \end{gathered}$ 1 MHz Rep Rate in Modulating Mode	us		1	
Tx EVM (OFDM)	EVM	$\begin{gathered} \mathrm{Tx}=+5.0 \mathrm{~V} @+22 \mathrm{~mA}, \mathrm{Rx}=+12 \mathrm{~V} @ 0 \mathrm{~mA} \\ \text { Pinc }=+39 \mathrm{dBm} \end{gathered}$	\%		0.8	

Notes:

1. Data is taken on M/A-COM evaluation board 1000029181-0000001@25C by removing peripheral board losses (connectors, transmission line, and bias elements).
2. Typical PIN Diode Forward Voltage $=+0.9 \mathrm{~V} @+22 \mathrm{~mA}$ for Insertion Loss.

Typical PIN Diode Reverse Voltage $=12 \mathrm{~V}-0.9 \mathrm{~V}=11.1 \mathrm{~V}$ for Isolation
(See Bias Schematic Page 9).
3. Switch is Asymmetrical, + 39 dBm RF Input Power Applies to Tx Port Only.
4. Center Ground Area of MLP 3mm Package must be Attached to Thermal Ground for Optimum RF Power Performance.

Assembly Note:

A typical profile for a $\mathrm{Sn} 60 / \mathrm{Pb} 40$ Soldering process is provided in Application Note, "M538 ",
" Surface Mounting Instructions " on the MA-COM website www.macom.com

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

MASW-000822-12770T Typical Performance Curves @ +25 ${ }^{\circ} \mathrm{C}$: Tx \& Rx Insertion Loss Bias Conditions: 10 mA and 20 mA for Low Loss, 11 V Back Bias for Isolation

MAASW-000822-12770T Typical Performance Curves @ +25 ${ }^{\circ} \mathrm{C}$: Tx \& Rx Isolation 20 mA for Loss, 11 V Back Bias for Isolation

MASW-000822-12770T, Tx \& Rx Isolation, 25C
—TX_Iso_20 — RX_Iso_20

MASW-000822-12770T Typical Performance Curves @+25 ${ }^{\circ} \mathrm{C}$: Tx Return Loss 20 mA for Loss, 11 V Back Bias for Isolation

MASW-000822-12770T, TX Return Loss (S11), + 25C

4.scon

HMICTM PIN Diode SP2T 8 Watt Switch
for $0.05-6.0 \mathrm{GHz}$ Higher Power Applications
MASW-000822-12770T Typical Performance Curves @ +25 ${ }^{\circ} \mathrm{C}$: Rx Return Loss 20 mA for Loss, 11 V Back Bias for Isolation

MASW-000822-12770T, RX Return Loss (S11), +25C

MASW-000822-12770T Outline - 3mm FQFP-N 16 Lead Saw Singulated

Driver and SP2T Schematic with Positive Voltage

Notes:

1. Forward Bias Diode Voltage, $\Delta \mathrm{Vf} @ 22 \mathrm{~mA}=+0.9 \mathrm{~V}$.
2. Reverse Bias Diode $=|-(+12 \mathrm{~V}-+0.9 \mathrm{~V})|=|-11.1| \mathrm{V}$.
3. Nominal Zetex ZXMN2AM832 MOSFET Low Output Voltage, Vds ~ + 0 V @ 22 mA .
4. The ZXMN2AM832 may be operated with +5 V with a small reduction in RF Isolation.
5. Un-used Texas Instruments SN54ACT86 XOR TTL Inputs are grounded.

D.C. Bias to RF Truth Table

RF State	TTL \& D.C. Bias Conditions	Voltage at Common Anode
 Isolation Tx-Rx	$+5 \mathrm{~V} @ 22 \mathrm{~mA}(\mathrm{Tx}),+12 \mathrm{~V} @ 0 \mathrm{~mA}(\mathrm{Rx})$	+0.9 V
 Isolation Rx-Tx	$+5 \mathrm{~V} @ 22 \mathrm{~mA}(\mathrm{Rx}),+12 \mathrm{~V} @ 0 \mathrm{~mA}(\mathrm{Tx})$	+0.9 V

HMICTM PIN Diode SP2T 8 Watt Switch

Driver and SP2T Schematic with Positive and Negative Voltage

D.C. Bias to RF Truth Table

RF State	TTL \& D.C. Bias Conditions	Voltage at Common Anode $\begin{gathered} \text { Rbias }=120 \Omega \\ -\mid \text { bias }=-50 \mathrm{~mA} \end{gathered}$
Low Loss Tx-Ant \& Isolation Tx-Rx	$\begin{gathered} \mathrm{TTL}=1 \\ -12 \mathrm{~V} @-50 \mathrm{~mA}(\mathrm{Tx}),+5 \mathrm{~V} @ 0 \mathrm{~mA}(\mathrm{Rx}) \end{gathered}$	-6.0 V
Low Loss Ant-Rx \& Isolation Rx-Tx	$\begin{gathered} \mathrm{TTL}=0 \\ -12 \mathrm{~V} @-50 \mathrm{~mA}(\mathrm{Rx}),+5 \mathrm{~V} @ 0 \mathrm{~mA}(\mathrm{Tx}) \end{gathered}$	-6.0 V

Notes for TTL Compatible Driver Functionality using +Vcc and -Vee.

1. The Mode Control defines the Type of TTL Logic. Grounding the Mode Control produces Inverting Logic:

TTL 0 (Input) $=+\mathrm{V},+\mathrm{I}$ (Output), and TTL 1 (Input) $=-\mathrm{V},-\mathrm{I}$ (Output).
Consequently Connecting the Mode Control to +5 V , produces Non- Inverting Logic:
TTL 0 (Input) $=-\mathrm{V},-\mathrm{I}$ (Output), and TTL 1 (Input) $=+\mathrm{V},+\mathrm{I}$ (Output).
2. Open circuit output voltage $\sim(+\mathrm{Vcc}-0.8 \mathrm{~V})$ or $(-\mathrm{Vee}+0.8 \mathrm{~V})$. Diode Forward Voltage ,
$\Delta \mathrm{Vd} @ 50 \mathrm{~mA} \sim 1.0 \mathrm{~V}$.
3. Rbias is used to build reverse D.C.voltage for the isolated , "OFF ", Series diode to Improve RF Linearity under High RF Signal.

Available Negative Bias Current $=(-\mathrm{Vee}+\Delta \mathrm{Vbe}+\Delta \mathrm{Vce}+\Delta \mathrm{Vd}) /(75 \Omega+\mathrm{Rbias})=(-\mathrm{Vee}+0.3 \mathrm{~V}+0.7+1.0 \mathrm{~V}) /(75 \Omega+\mathrm{Rbias})$. As example,
using -Vee $=-12 \mathrm{~V}$ for -50 mA bias current to forward Biased PIN Diode, Rbias $=[(-12 \mathrm{~V}+2.0 \mathrm{~V}) /-0.05 \mathrm{~A}]-75 \Omega=125 \Omega$.
In this example, using Rbias $=120 \Omega$, Tx Bias Voltage $\sim-[(120 \Omega * 0.05 \mathrm{~A})+1.0 \mathrm{~V}] \sim-7.0 \mathrm{~V}$.
Using $+\mathrm{Vcc}=+5 \mathrm{~V}$, the " OFF " Series Diode will have a Back Biased Voltage ~
$|-6.0 \mathrm{~V}-(5-0.8) \mathrm{V}|=|-10.2 \mathrm{~V}|$.
4. The SP2T Switch can be operated from $-V e e=-5 \mathrm{~V}$ with slightly degraded Tx linearity.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

[^0]: - North America Tel: 800.366.2266 / Fax: 978.366.2266
 - Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 - Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

