

1.7MHz, Single Cell Micropower DC/DC Converter

July 1998

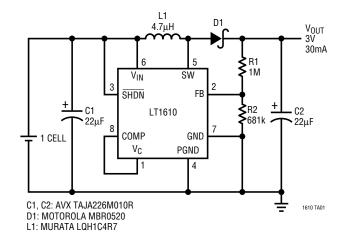
FEATURES

- Uses Tiny Capacitors and Inductor
- Internally Compensated
- Low Quiescent Current: 30µA
- Operates with V_{IN} as Low as 1V
- 3V at 30mA from a Single Cell
- 5V at 200mA from 3.3V
- Output Voltage: Up to 28V
- Low Shutdown Current: <1µA
- Automatic Burst Mode[™] Switching at Light Load
- Low V_{CESAT} Switch: 300mV at 300mA
- 8-Lead MSOP and SO Packages

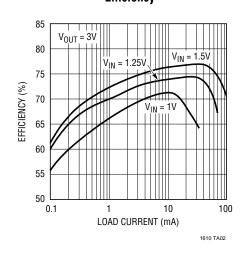
APPLICATIONS

- Pagers
- Cordless Phones
- Battery Backup
- LCD Bias
- Portable Electronic Equipment

DESCRIPTION

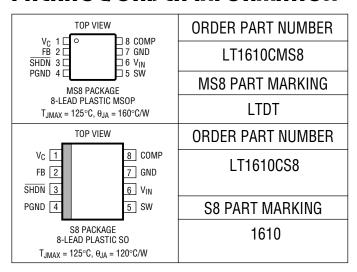

The LT®1610 is a micropower fixed frequency DC/DC converter that operates from an input voltage as low as 1V. Intended for small, low power applications, it switches at 1.7MHz, allowing the use of tiny capacitors and inductors. The device can generate 3V at 30mA from a single cell (1V) supply. An internal compensation network can be connected to the LT1610 V_{C} pin, eliminating two components. No-load quiescent current of the LT1610 is $30\mu\text{A}$ and the internal NPN power switch handles a 300mA current with a voltage drop of 300mV.

The LT1610 is available in 8-lead MSOP and SO packages.


(7), LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

1-Cell to 3V Step-Up Converter


Efficiency

ABSOLUTE MAXIMUM RATINGS

V _{IN} Voltage 8V
SW Voltage0.4V to 30V
FB Voltage V _{IN} + 0.3V
V _C Voltage 2V
COMP Voltage 2V
Current into FB Pin ±1mA
SHDN Voltage 8V
Maximum Junction Temperature 125°C
Operating Temperature Range
Commercial0°C to 70°C
Extended Commercial (Note 1)40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec)300°C
Consult factory for Industrial and Military grade parts.

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS

Commercial grade 0°C to 70°C, $V_{IN} = 1.5V$, $V_{\overline{SHDN}} = V_{IN}$, $T_A = 25$ °C unless otherwise noted. (Note 1)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Operating Voltage				0.9	1	V
Maximum Operating Voltage					8	V
Feedback Voltage		•	1.20	1.23	1.26	V
Quiescent Current	V _{SHDN} = 1.5V, Not Switching			30	60	μА
Quiescent Current in Shutdown	$V_{\overline{SHDN}} = 0V, V_{\overline{IN}} = 2V$ $V_{\overline{SHDN}} = 0V, V_{\overline{IN}} = 5V$			0	0.5 1.0	μA μA
FB Pin Bias Current		•		27	60	nA
Reference Line Regulation	$\begin{array}{l} 1V \leq V_{IN} \leq 2V \; (25^{\circ}\text{C}, 0^{\circ}\text{C}) \\ 1V \leq V_{IN} \leq 2V \; (70^{\circ}\text{C}) \\ 2V \leq V_{IN} \leq 8V \; (25^{\circ}\text{C}, 0^{\circ}\text{C}) \\ 2V \leq V_{IN} \leq 8V \; (70^{\circ}\text{C}) \end{array}$			0.6 0.1	1 2 0.3 0.4	%/V %/V %/V
Error Amp Transconductance	$\Delta I = 2\mu A$			40		μmhos
Error Amp Voltage Gain				100		V/V
Switching Frequency		•	1.4	1.7	2	MHz
Maximum Duty Cycle		•	77 75	80	95 95	% %
Switch Current Limit	(Note 2)		450	600	900	mA
Switch V _{CESAT}	I _{SW} = 300mA	•		300	350 400	mV mV
Switch Leakage Current	V _{SW} = 5V			0.01	1	μА
SHDN Input Voltage High			1			V
SHDN Input Voltage Low					0.3	V
SHDN Pin Bias Current	$V_{\overline{SHDN}} = 3V$ $V_{\overline{SHDN}} = 0V$			10 0	0.1	μA μA

The lacktriangle denotes specifications which apply over the specified temperature range.

Note 1: C grade device specifications are guaranteed over the 0°C to 70°C temperature range. In addition, C grade device specifications are assured

over the -40°C to 85°C temperature range by design or correlation, but are not production tested.

Note 2: Current limit guaranteed by design and/or correlation to static test. Current limit is affected by duty cycle due to ramp generator. See Block Diagram.

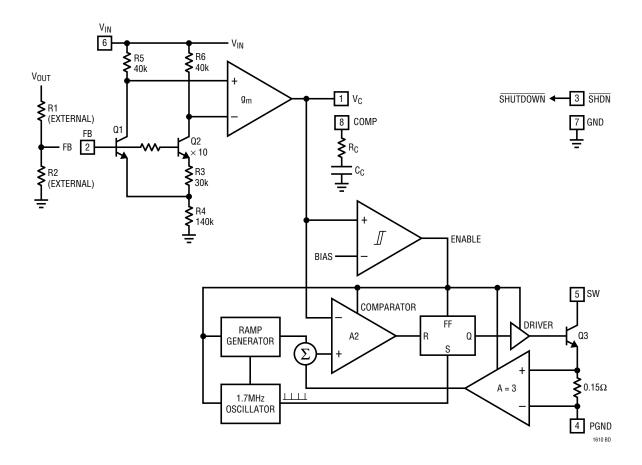
PIN FUNCTIONS

 V_C (Pin 1): Error Amplifier Output. Frequency compensation network must be connected to this pin, either internal (COMP pin) or external series RC to ground. $100k\Omega/200pF$ typical value.

FB (Pin 2): Feedback Pin. Reference voltage is 1.23V. Connect resistive divider tap here. Minimize trace area at FB. Set V_{OUT} according to V_{OUT} = 1.23V (1 + R1/R2).

SHDN (Pin 3): Shutdown. Ground this pin to turn off device. Tie to 1V or more to enable.

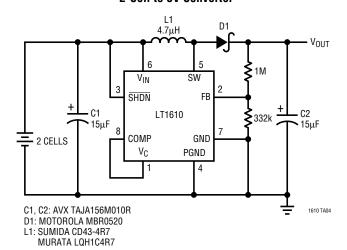
PGND (Pin 4): Power Ground. Tie directly to local ground plane.

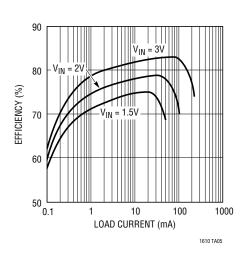

SW (**Pin 5**): Switch Pin. Connect inductor/diode here. Minimize trace area at this pin to keep EMI down.

V_{IN} (Pin 6): Input Supply Pin. Must be locally bypassed.

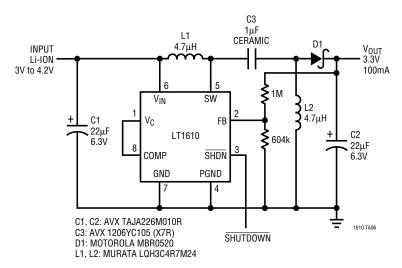
GND (Pin 7): Signal Ground. Carries all device ground current except switch current. Tie to local ground plane.

COMP (Pin 8): Internal Compensation Network. Tie to V_C pin, or let float if external compensation is used. Output capacitor must be tantalum if COMP pin is used for compensation.


BLOCK DIAGRAM



TYPICAL APPLICATIONS


2-Cell to 5V Converter

Efficiency

Li-Ion to 3.3V SEPIC DC/DC Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS		
LTC®1163	Triple High Side Driver for 2-Cell Inputs	1.8V Minimum Input, Drives N-Channel MOSFETs		
LTC1474	Micropower Step-Down DC/DC Converter	94% Efficiency, 10µA I _Q , 9V to 5V at 250mA		
LT1302	High Output Current Micropower DC/DC Converter	5V/600mA from 2V, 2A Internal Switch, 200μA I _Q		
LT1304	2-Cell Micropower DC/DC Converter	Low-Battery Detector Active in Shutdown		
LT1307	Single Cell Micropower 600kHz PWM DC/DC Converter	3.3V at 75mA from 1 Cell, MSOP Package		
LTC1440/1/2	Ultralow Power Single/Dual Comparators with Reference	2.8μA I _Q , Adjustable Hysteresis		
LTC1516	2-Cell to 5V Regulated Charge Pump	12μA I _Q , No Inductors, 5V at 50mA from 3V Input		
LT1521	Micropower Low Dropout Linear Regulator	500mV Dropout, 300mA Current, 12μA I _Q		