

INITIAL RELEASE Final Electrical Specifications LT1468

90MHz, 22V/µs 16-Bit Accurate Operational Amplifier

August 1998

FEATURES

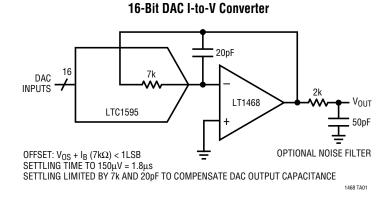
- 90MHz Gain Bandwidth, f = 100kHz
- 22V/µs Slew Rate
- **Settling Time:** < 1µs (A_V = −1, 150µV, 10V Step)
- Maximum Input Offset Voltage: 75µV
- Maximum Input Offset Voltage Drift: 2µV/°C
- Maximum (–) Input Bias Current: 10nA
- Minimum DC Gain: 1000V/mV
- Minimum Output Swing into 2k: ±12.8V
- Unity Gain Stable
- Input Noise Voltage: 5nV/√Hz
- Input Noise Current: 0.6pA/√Hz
- Low Distortion, –96dBc for 100kHz, 10V_{P-P}
- Specified at ±5V and ±15V

APPLICATIONS

- 16-Bit DAC Current-to-Voltage Converter
- Precision Instrumentation
- ADC Buffer
- Low Distortion Active Filters
- High Accuracy Data Acquisition Systems
- Photodiode Amplifiers

DESCRIPTION

The LT[®]1468 is a precision high speed operational amplifier with 16-bit accuracy and less than 1 μ s settling to 150 μ V for 10V signals. This unique blend of precision and AC performance makes the LT1468 the optimum choice for high accuracy data acquisition applications and current-to-voltage conversion. The initial accuracy and drift characteristics of the input offset voltage and inverting input bias current are tailored for inverting applications.

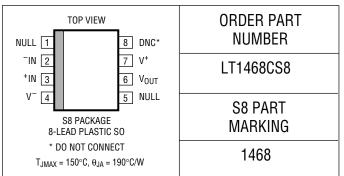

The 90MHz gain bandwidth ensures high open-loop gain at frequency for reducing distortion. In noninverting applications such as an ADC buffer, the low distortion and DC accuracy allow full 16-bit AC and DC performance.

The 22V/ μ s slew rate of the LT1468 improves large signal performance in applications such as active filters and instrumentation amplifiers compared to other precision op amps.

The LT1468 is manufactured on Linear Technology's complementary bipolar process.

C, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION



ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V ⁺ to V ⁻)	36V
Maximum Input Current (Note 1)	10mA
Output Short Circuit Duration (Note 2)	Indefinite
Operating Temperature Range	. −40°C to 85°C
Specified Temperature Range (Note 3)	. −40°C to 85°C
Junction Temperature	150°C
Storage Temperature Range	
Lead Temperature (Soldering, 10 sec.)	300°C

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military Grade parts.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{CM} = 0V$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage		±15V ±5V		30 50	75 175	μV μV
l _{os}	Input Offset Current		±5V to ±15V		15	50	nA
I _B –	Inverting Input Bias Current		±5V to ±15V		3	10	nA
I _B +	Noninverting Input Bias Current		±5V to ±15V		10	40	nA
e _n	Input Noise Voltage	f = 10kHz	±5V to ±15V		5		nV/√Hz
i _n	Input Noise Current	f = 10kHz	±5V to ±15V		0.6		pA/√Hz
R _{IN}	Input Resistance	V _{CM} = ±12.5V Differential	±15V ±15V	100 50	240 150		MΩ kΩ
CIN	Input Capacitance		±15V		4		pF
	Positive Input Voltage Range		±15V ±5V	12.5 2.5	13.5 3.5		V V
	Negative Input Voltage Range		±15V ±5V		-14.5 -4.5	-12.5 -2.5	V V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12.5V$ $V_{CM} = \pm 2.5V$	±15V ±5V	96 96	110 112		dB dB
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 4.5 V$ to $\pm 15 V$		100	112		dB
A _{VOL}	Large-Signal Voltage Gain	$\begin{array}{c} V_{OUT} = \pm 12.5 V, \ R_L = 10 k \\ V_{OUT} = \pm 12.5 V, \ R_L = 2 k \\ V_{OUT} = \pm 2.5 V, \ R_L = 10 k \\ V_{OUT} = \pm 2.5 V, \ R_L = 2 k \end{array}$	±15V ±15V ±5V ±5V	1000 500 1000 500	9000 5000 6000 3000		V/mV V/mV V/mV V/mV
V _{OUT}	Output Swing	$ \begin{array}{l} R_L = 10k, V_{IN} = \pm 1mV \\ R_L = 2k, V_{IN} = \pm 1mV \\ R_L = 10k, V_{IN} = \pm 1mV \\ R_L = 2k, V_{IN} = \pm 1mV \end{array} $	±15V ±15V ±5V ±5V	$\pm 13.0 \\ \pm 12.8 \\ \pm 3.0 \\ \pm 2.8$	$\pm 13.6 \\ \pm 13.5 \\ \pm 3.6 \\ \pm 3.5$		V V V V
I _{OUT}	Output Current	$V_{OUT} = \pm 12.5V$ $V_{OUT} = \pm 2.5V$	±15V ±5V	±15 ±15	±22 ±22		mA mA
I _{SC}	Short-Circuit Current	$V_{OUT} = 0V, V_{IN} = \pm 0.2V$	±15V	±25	±40		mA
SR	Slew Rate	$A_V = -1, R_L = 2k$ (Note 4)	±15V ±5V	15 11	22 17		V/μs V/μs
	Full-Power Bandwidth	10V peak, (Note 5) 3V peak, (Note 5)	±15V ±5V		350 900		kHz kHz

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{CM} = 0V$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}	MIN	ТҮР	MAX	UNITS
GBW	Gain Bandwidth	f = 100kHz, R _L = 2k	±15V ±5V	60 55	90 85		MHz MHz
t _r , t _f	Rise Time, Fall Time	A _V = 1, 10% to 90%, 0.1V	±15V ±5V		11 12		ns ns
	Overshoot	A _V = 1, 0.1V	±15V ±5V		30 35		% %
	Propagation Delay	$A_V = 1,50\% V_{IN}$ to 50% V_{OUT} , 0.1V	±15V ±5V		9 10		ns ns
t _s	Settling Time	10V Step, 0.01%, $A_V = -1$ 10V Step, 150 μ V, $A_V = -1$ 5V Step, 0.01%, $A_V = -1$	±15V ±15V ±5V		760 900 780		ns ns ns
R ₀	Output Resistance	A _V = 1, f = 100kHz	±15V		0.02		Ω
I _S	Supply Current		±15V ±5V		3.9 3.6	5.2 5.0	mA mA

$0^\circ C \leq T_A \leq 70^\circ C, \; V_{CM}$ = 0V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		±15V ±5V			150 250	μV μV
	Input V _{OS} Drift	(Note 6)	±5V to ±15V		0.7	2.0	μV/°C
I _{OS}	Input Offset Current		±5V to ±15V			65	nA
	Input Offset Current Drift				60		pA/°C
I _B –	Inverting Input Bias Current		$\pm 5V$ to $\pm 15V$			15	nA
	Negative Input Current Drift				40		pA/°C
I _B +	Noninverting Input Bias Current		±5V to ±15V			50	nA
CMRR	Common Mode Rejection Ratio	$\begin{array}{l} V_{CM}=\pm 12.5V\\ V_{CM}=\pm 2.5V \end{array}$	±15V ±5V	94 94			dB dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = ±4.5V to ±15V		98			dB
A _{VOL}	Large-Signal Voltage Gain	$ \begin{array}{l} V_{0UT} = \pm 12.5 V, \ R_L = 10 k \\ V_{0UT} = \pm 12.5 V, \ R_L = 2 k \\ V_{0UT} = \pm 2.5 V, \ R_L = 10 k \\ V_{0UT} = \pm 2.5 V, \ R_L = 2 k \end{array} $	±15V ±15V ±5V ±5V	500 250 500 250			V/mV V/mV V/mV V/mV
V _{OUT}	Output Swing	$ \begin{array}{l} R_L = 10k, V_{IN} = \pm 1mV \\ R_L = 2k, V_{IN} = \pm 1mV \\ R_L = 10k, V_{IN} = \pm 1mV \\ R_L = 2k, V_{IN} = \pm 1mV \end{array} $	±15V ±15V ±5V ±5V	±12.9 ±12.7 ±2.9 ±2.7			V V V V
I _{OUT}	Output Current	$V_{OUT} = \pm 12.5V$ $V_{OUT} = \pm 2.5V$	±15V ±5V	±12.5 ±12.5			mA mA
I _{SC}	Short-Circuit Current	$V_{OUT} = 0V, V_{IN} = \pm 0.2V$	±15V	±17			mA
SR	Slew Rate	$A_V = -1, R_L = 2k$ (Note 4)	±15V ±5V	13 9			V/μs V/μs
GBW	Gain Bandwidth	f = 100kHz, R _L = 2k	±15V ±5V	55 50			MHz MHz
I _S	Supply Current		±15V ±5V			6.5 6.3	mA mA

$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \quad -40^{\circ}C \leq T_A \leq 85^{\circ}C, \ V_{CM} = 0V \ unless \ otherwise \ noted \ (Note \ 3).$

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage		±15V ±5V			230 330	μV μV
	Input V _{OS} Drift	(Note 6)	±5V to ±15V		0.7	2.5	µV/°C
l _{os}	Input Offset Current		$\pm 5V$ to $\pm 15V$			80	nA
	Input Offset Current Drift				120		pA/°C
I _B –	Inverting Input Bias Current		±5V to ±15V			30	nA
	Negative Input Current Drift				80		pA/°C
I _B +	Noninverting Input Bias Current		±5V to ±15V			60	nA
CMRR	Common Mode Rejection Ratio	$\begin{array}{c} V_{CM}=\pm 12.5V\\ V_{CM}=\pm 2.5V \end{array}$	±15V ±5V	92 92			dB dB
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 4.5 V$ to $\pm 15 V$		96			dB
A _{VOL}	Large-Signal Voltage Gain	$ \begin{array}{l} V_{OUT} = \pm 12V, \ R_L = 10k \\ V_{OUT} = \pm 10V, \ R_L = 2k \\ V_{OUT} = \pm 2.5V, \ R_L = 10k \\ V_{OUT} = \pm 2.5V, \ R_L = 2k \end{array} $	±15V ±15V ±5V ±5V	300 150 300 150			V/mV V/mV V/mV V/mV
V _{OUT}	Output Swing	$ \begin{array}{c} R_L = 10k, V_{IN} = \pm 1mV \\ R_L = 2k, V_{IN} = \pm 1mV \\ R_L = 10k, V_{IN} = \pm 1mV \\ R_L = 2k, V_{IN} = \pm 1mV \end{array} $	±15V ±15V ±5V ±5V	±12.8 ±12.6 ±2.8 ±2.6			V V V V
I _{OUT}	Output Current	$V_{OUT} = \pm 12.5V$ $V_{OUT} = \pm 2.5V$	±15V ±5V	±8 ±8			mA mA
I _{SC}	Short-Circuit Current	$V_{0UT} = 0V, V_{IN} = \pm 0.2V$	±15V	±12			mA
SR	Slew Rate	$A_V = -1, R_L = 2k$ (Note 4)	±15V ±5V	10 7			V/μs V/μs
GBW	Gain Bandwidth	f = 100kHz, R _L = 2k	±15V ±5V	45 40			MHz MHz
I _S	Supply Current		±15V ±5V			7.0 6.8	mA mA

Note 1: The inputs are protected by back-to-back diodes and two 100Ω series resistors. If the differential input voltage exceeds 0.7V, the input current should be limited to 10mA. Input voltages outside the supplies will be clamped by ESD protection devices and input currents should also be limited to10mA.

Note 2: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.

Note 3: The LT1468 is designed, characterized and expected to meet these extended temperature limits, but is not tested at -40° C and at 85° C. Consult factory for guaranteed I grade parts.

Note 4: Slew rate is measured between $\pm 8V$ on the output with $\pm 12V$ input for $\pm 15V$ supplies and $\pm 2V$ on the output with $\pm 3V$ input for $\pm 5V$ supplies. **Note 5**: Full power bandwidth is calculated from the slew rate measurement: FPBW = SR/2 π V_P

Note 6: This parameter is not 100% tested.