

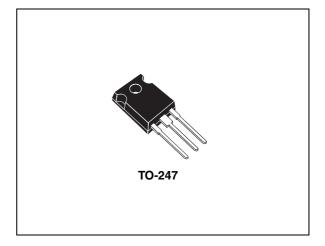
STW9N150

N-channel 1500V - 2.2Ω - 8A - TO-247 Very high voltage PowerMESH™ Power MOSFET

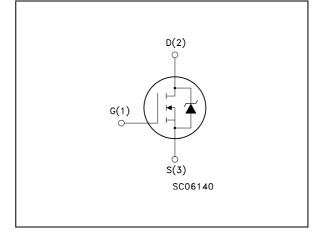
TARGET SPECIFICATION

General features

Туре	V _{DSS}	R _{DS(on)}	I _D	Pw	
STW9N150	1500V	< 2.7Ω	8A	350W	


- 100% avalanche tested
- Avalanche ruggedness
- Gate charge minimized
- Very low intrinsic capacitances
- High speed switching
- Very low on-resistance

Description


Using the well consolidated high voltage MESH OVERLAY[™] process, STMicroelectronics has designed an advanced family of Power MOSFETs with outstanding performances. The strengthened layout coupled with the Company's proprietary edge termination structure, gives the lowest R_{DS(on)} per area, unrivalled gate charge and switching characteristics.

Applications

Switching application

Internal schematic diagram

Order code

Part number	Marking	Package	Packaging
STW9N150	W9N150V	TO-247	Tube

This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.

1 Electrical ratings

Table 1. Abs	olute maximu	m ratings
--------------	--------------	-----------

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	1500	V
V _{GS}	Gate- source voltage	± 30	V
Ι _D	Drain current (continuous) at $T_{C} = 25^{\circ}C$	8	Α
Ι _D	Drain current (continuous) at T _C = 100°C	5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	32	Α
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	350	W
	Derating factor	0.37	W/°C
T _j T _{stg}	Operating junction temperature Storage temperature	-55 to 150	°C

1. Pulse width limited by safe operating area

Table 2. Thermal data

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	0.36	°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	Tbd	А
E _{AS}	Single pulse avalanche energy (starting $T_j = 25^{\circ}C$, $I_D = I_{AR}$, $V_{DD} = 50V$)	Tbd	mJ

2 Electrical characteristics

(Tcase =25°C unless otherwise specified)

Symbol	Parameter	Parameter Test conditions		Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 mA, V_{GS} = 0$	1500			۷
I _{DSS}		$V_{DS} = Max rating$ $V_{DS} = Max rating, T_C=125^{\circ}C$			10 500	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 30V$			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3	4	5	V
R _{DS(on}	Static drain-source on resistance	V _{GS} = 10V, I _D = 1.3A		2.2	2.7	Ω

Table 4. On /off states

Table 5. Dynamic

	Bynamie					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} = 30V, I_{D} = 2A$		Tbd		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0		3600 280 35		pF pF pF
Rg	Gate input resistance	f=1MHz Gate DC Bias=0 Test signal level=20mV open drain		2		Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 600V, I_D = 2.5A,$ $V_{GS} = 10V$ (see Figure 2)		90 Tbd Tbd		nC nC nC

1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

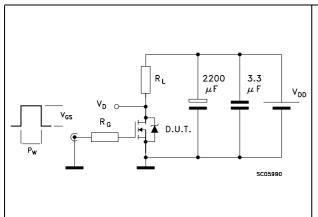
		J					
:	Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
	t _{d(on)} t _r	Turn-on delay time Rise time	V _{DD} = 750V, I _D = 2A,		Tbd Tbd		ns ns
	t _{d(off)}	Turn-off-delay time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see Figure 1)		Tbd		ns
	t _f	Fall time			Tbd		ns

Table 6.Switching times

Table 7. Source drain diode

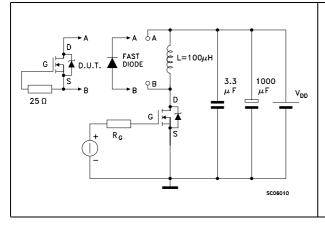
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)				8 32	A A
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 4A, V_{GS} = 0$			Tbd	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 4A, di/dt = 100A/μs V _{DD} = 45V Tj = 25°C (<i>see Figure 3</i>)		Tbd Tbd Tbd		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 4A, di/dt = 100A/μs V _{DD} = 45V Tj = 150°C (<i>see Figure 3</i>)		Tbd Tbd Tbd		ns μC Α

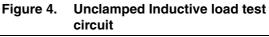
1. Pulse width limited by safe operating area

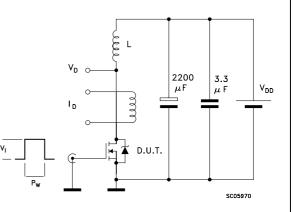

2. Pulsed: pulse duration = $300\mu s$, duty cycle 1.5%

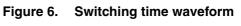
...V DD

3 Test circuits


Figure 1. Switching times test circuit for resistive load


120 47K Ω 1KΩ + 100nF I_G=CONST $V_i = 20V = V_{GMAX}$ 100Ω 🗼 D.U.T. \odot 2200 µF 2.7ΚΩ ۷_G - 1 47K Ω <u>1KΩ</u> SC06000


Gate charge test circuit


Figure 3. Test circuit for inductive load switching and diode recovery times

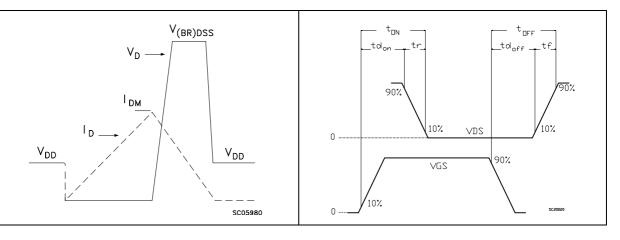
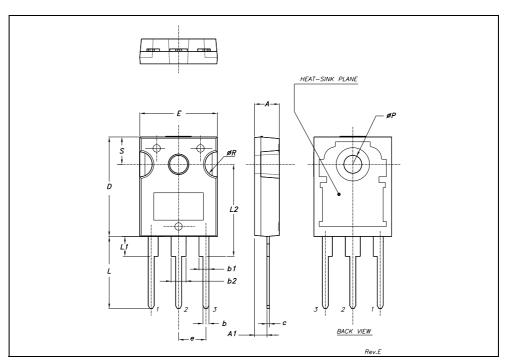


Figure 2.

57


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com*

DIM.		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
Е	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
øР	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

TO-247 MECHANICAL DATA

5 Revision history

Table 8. Revision history

Date	Revision	Changes
24-May-2007	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

