

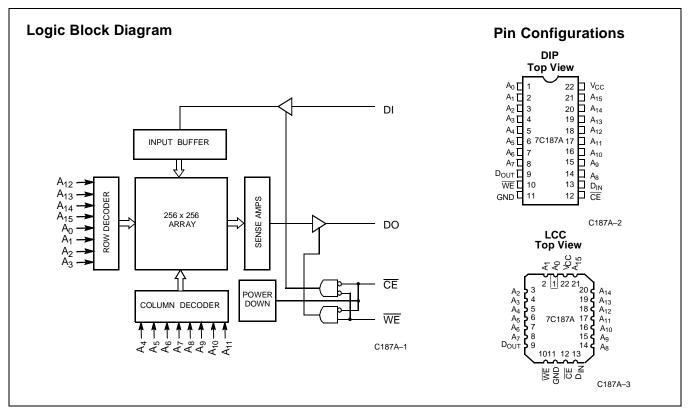
64K x 1 Static RAM

Features

- · High speed
 - -20 ns
- · CMOS for optimum speed/power
- · Low active power
 - 495 mW
- Low standby power
 - -220 mW
- TTI-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C187A is a high-performance CMOS static RAM organized as 65,536 words by 1 bit. Easy memory expansion is


provided by an active LOW chip enable (\overline{CE}) and three-state drivers. The CY7C187A has an automatic power-down feature, reducing the power consumption by 55% when deselected

Writing to the device is accomplished when the chip enable (\overline{CE}) and write enable (\overline{WE}) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A₀ through A₁₅).

Reading the device is accomplished by taking the chip enable (\overline{CE}) LOW, while write enable (\overline{WE}) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data output (DO) pin.

The output pin stays in high-impedance state when chip enable (\overline{CE}) is HIGH or write enable (\overline{WE}) is LOW.

The 7C187A utilizes a die coat to insure alpha immunity.

Selection Guide^[1]

		7C187A-15	7C187A-20	7C187A-25	7C187A-35
Maximum Access Time (ns)		15	20	25	35
Maximum Operating Current (mA)	Military	160	90	80	80
Maximum Standby Current (mA)	Military	40/20	40/20	40/20	30/20

Shaded area contains preliminary information.

Notes:

^{1.} For commercial specifications, see CY7C187 datasheet.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to+150°C Ambient Temperature with Power Applied55°C to+125°C Supply Voltage to Ground Potential (Pin 22 to Pin 11).....-0.5V to+7.0V DC Voltage Applied to Outputs in High Z State^[2].....-0.5V to+7.0V

DC Input Voltage ^[2]	0.5V to +7.0V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Military ^[3]	−55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[4]

				7C18	7A-15	7C18	7A-20	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} =12.0 mA	Mil		0.4		0.4	V
V _{IH}	Input HIGH Voltage		•	2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[2]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	$GND \le V_1 \le V_{CC}$			- 5	+5	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled	-5	+5	- 5	+5	μА	
I _{OS}	Output Short Circuit Current ^[5]	V _{CC} = Max., V _{OUT} = GND			-350		-350	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA	Mil		160		90	mA
I _{SB1}	Automatic CE Power- Down Current ^[6]	$Max.\ V_{CC}, \overline{CE} \geq V_{IH} \qquad \qquad Mil$			40		40	mA
I _{SB2}	Automatic CE Power- Down Current ^[6]	$\begin{array}{ll} \text{Max. V}_{CC}, \overline{\text{CE}} \geq \text{V}_{CC} - 0.3\text{V}, & \text{Mil} \\ \text{V}_{\text{IN}} \geq \text{V}_{CC} - 0.3\text{V or} \\ \text{V}_{\text{IN}} \leq 0.3\text{V} & \end{array}$			20		20	mA

Shaded area contains preliminary information.

V_{IL} (min.) = −3.0V for pulse durations less than 30 ns.

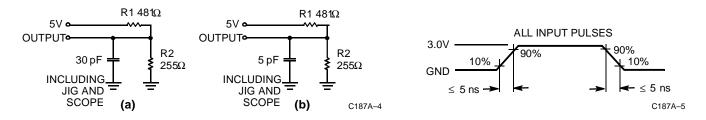
T_A is the "instant on" case temperature.

See the last page of this specification for Group A subgroup testing information.

Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Electrical Characteristics Over the Operating Range^[4] (continued)


				7C18	7A-25	7C187	7A-35	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} =8.0 mA	Mil		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[2]			-3.0	0.8	-3.0	0.8	V
I _{IX}	Input Load Current	$GND \leq V_1 \leq V_{CC}$	$GND \le V_1 \le V_{CC}$			-5	+5	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_{O \le} V_{CC}$, Output Disal	bled	-5	+5	-5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[5]	V _{CC} = Max., V _{OUT} = GND			-350		-350	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA	Mil		80		80	mA
I _{SB1}	Automatic CE Power-Down Current ^[6]	$Max.\ V_{CC}, \overline{CE} \geq V_{IH} \qquad \qquad Mil$			40		30	mA
I _{SB2}	Automatic CE Power-Down Current ^[6]	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V or} \\ &\text{V}_{\text{IN}} \leq 0.3\text{V} \end{aligned}$	Mil		20		20	mA

Capacitance^[7]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

Note:

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

0UTPUT• 167Ω 1.73V

^{7.} Tested initially and after any design or process changes that may affect these parameters.

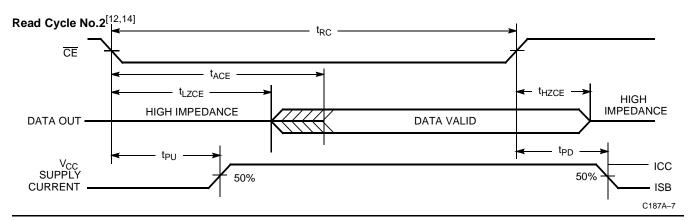
Switching Characteristics Over the Operating Range^[4, 8]

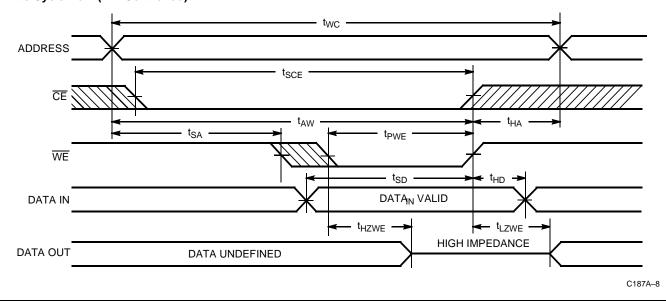
		7C18	7A-15	7C187A-20		7C187A-25		7C187A-35		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE		•				•	•	•	•	
t _{RC}	Read Cycle Time	15		20		25		35		ns
t _{AA}	Address to Data Valid		15		20		25		35	ns
t _{OHA}	Output Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		15		20		25		35	ns
t _{LZCE}	CE LOW to Low Z ^[9]	3		5		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[9,10]		8		8		10		15	ns
t _{PU}	CE LOW to Power-Up	0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		15		20		20		20	ns
WRITE CYCLE	[11]	•				•	•	•	•	
t _{WC}	Write Cycle Time	15		20		20		25		ns
t _{SCE}	CE LOW to Write End	10		15		20		25		ns
t _{AW}	Address Set-Up to Write End	10		15		20		25		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	10		15		15		20		ns
t _{SD}	Data Set-Up to Write End	7		10		10		15		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[9]	3		5		5		5		ns
t _{HZWE}	WE LOW to High Z ^[9,10]		7		7		7		10	ns

Shaded area contains preliminary information.

Notes:

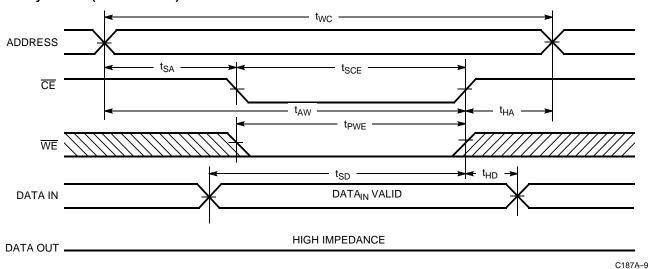

^{8.}


Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} for any given device. t_{HZCE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured \pm 500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.


Switching Waveforms

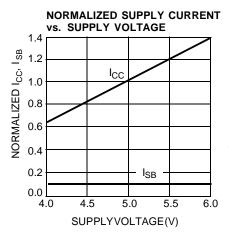
Read Cycle No. 1^[12,13]

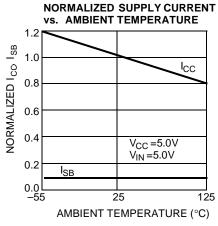
Write Cycle No.1 (WE Controlled)[11]

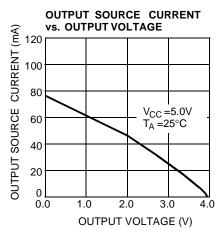


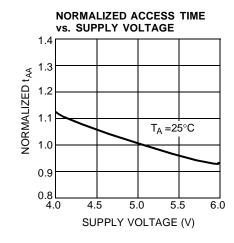
- Notes:
 12. WE is HIGH for read cycle.
- 13. Device is continuously selected, \$\overline{CE}\$ = V_{IL}.
 14. Address valid prior to or coincident with \$\overline{CE}\$ transition LOW.

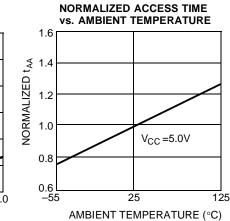
Switching Waveforms (Continued)

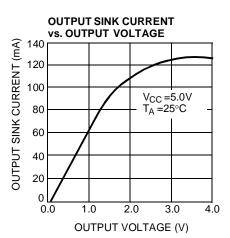

Write Cycle No.2 (CE Controlled)[11,15]

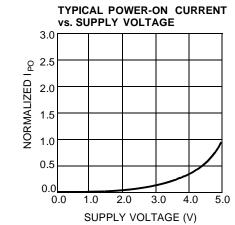


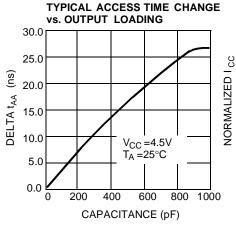

Note:

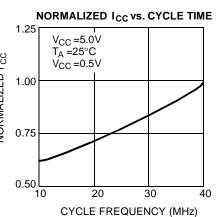

15. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.


Typical DC and AC Characteristics









Typical DC and AC Characteristics

Address Designators

Address Name	Address Function	Pin Number
A0	Х3	1
A1	X4	2
A2	X5	3
A3	X6	4
A4	X7	5
A5	Y7	6
A6	Y6	7
A7	Y2	8
A8	Y3	14
A9	Y1	15
A10	Y0	16
A11	Y4	17
A12	Y5	18
A13	X0	19
A14	X1	20
A15	X2	21

Truth Table

CE	WE	Input/Output	Mode
Н	Х	High Z	Deselect/Power-Down
L	Н	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C187A-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C187A-15LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
20	CY7C187A-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C187A-20LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
25	CY7C187A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C187A-25LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
35	CY7C187A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C187A-35LMB	L52	22-Pin Rectangular Leadless Chip Carrier	

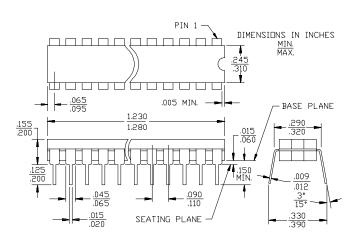
Shaded area contains preliminary information.

MILITARY SPECIFICATIONS Group A Subgroup Testing

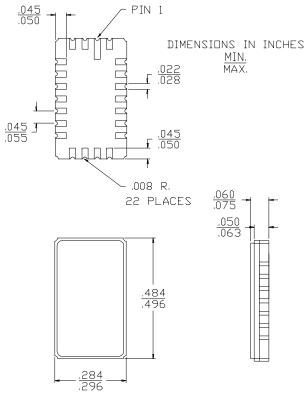
DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{OS}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3

Switching Characteristics


Parameter	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{OHA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{SCE}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

Document #: 38-00115-D



Package Diagrams

24-Lead (300-Mil) CerDIP D14 MIL-STD-1835 D- 9 Config.A

22-Pin Rectangular Leadless Chip Carrier L52

