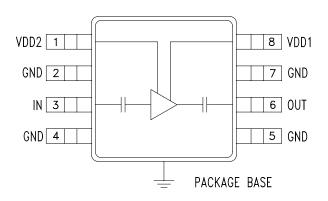


v03.0703

HMC280MS8G


GaAs MMIC POWER AMPLIFIER 5.0 - 6.0 GHz

Typical Applications

The HMC280MS8G is ideal for:

- UNII & HiperLAN
- ISM

Functional Diagram

Features

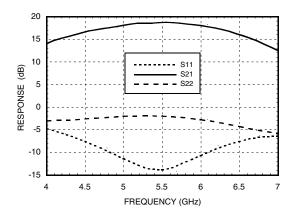
Psat Output Power: +24 dBm

Output IP3: +38 dBm High Gain: 18 dB

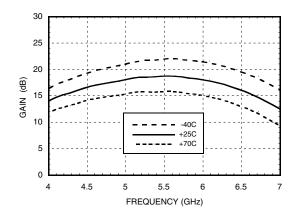
Single Supply: +3.6V

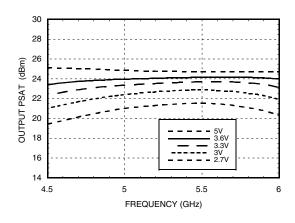
Ultra Small Package: MSOP8G

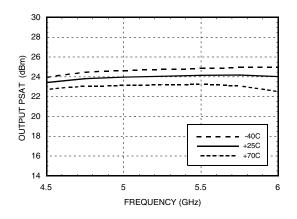
General Description

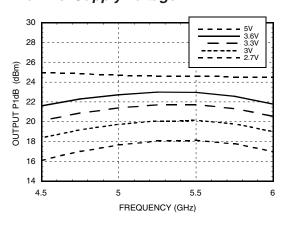

The HMC280MS8G is a +3.6V GaAs MMIC power amplifier covering 5 to 6 GHz. The device is packaged in a low cost, surface mount 8 lead MSOP plastic package with an exposed base paddle for improved RF ground and thermal dissipation. The amplifier provides 18 dB of gain and 24 dBm Psat while operating from a single positive supply. External component requirements are minimal with the amplifier occupying less than 0.023 sq. in. (14.6 sq. mm). All data is taken with the amplifier assembled into a 50 ohm test fixture with the exposed base paddle connected to RF ground. For transmit / receive applications use with either the HMC223MS8 or HMC224MS8 SPDT switches.

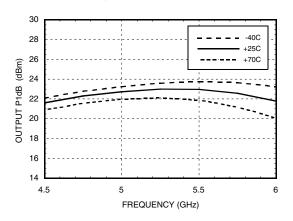
Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vdd= +3.6V


Parameter	Min.	Тур.	Max.	Units
Frequency Range		5.0 - 6.0		GHz
Gain	14	19	23	dB
Gain Flatness		±1.0		dB
Input Return Loss	8	12		dB
Reverse Isolation	40	44		dB
Output Power for 1 dB Compression (P1dB) 5.0 - 5.5 Gi 5.0 - 6.0 Gi		23 22		dBm
Saturated Output Power (Psat)	21	24		dBm
Output Third Order Intercept (IP3)	33	38		dBm
Noise Figure		13		dB
Supply Current (Idd)(Vdd1 = Vdd2 = +3.6 Vdc)		480		mA

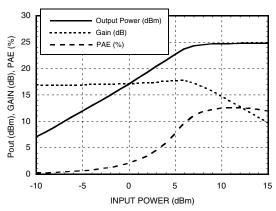

Broadband Gain & Return Loss


Gain vs. Temperature @ 3.6V

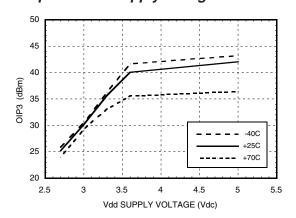

Psat vs. Supply Voltage

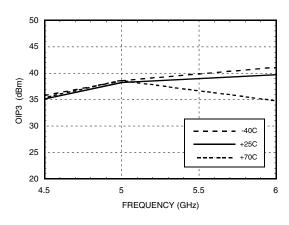

Psat vs. Temperature @ 3.6V

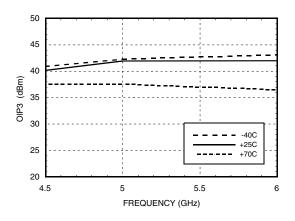
P1dB vs. Supply Voltage

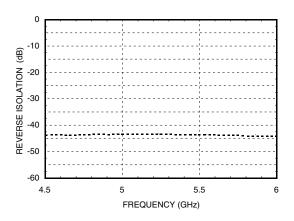


P1dB vs. Temperature @ 3.6V



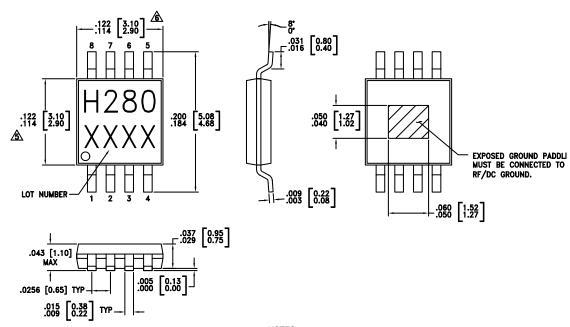

Power Compression @ 5.25 GHz


Output IP3 vs Supply Voltage @ 6.0 GHz


Output IP3 vs. Temperature @ 3.6V

Output IP3 vs. Temperature @ 5.0V

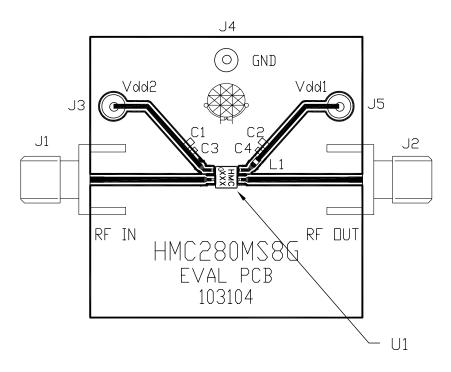
Reverse Isolation @ 3.6V



Absolute Maximum Ratings

Drain Bias Voltage (Vdd1, Vdd2)	+8.0 Vdc
RF Input Power (RFin) (Vdd = +3.6 Vdc)	+20 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 41 mW/°C above 85 °C)	2.67 W
Thermal Resistance (channel to ground paddle)	24.3 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C

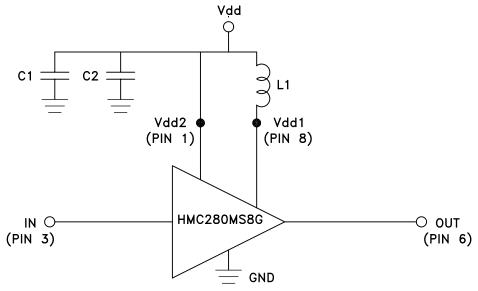
Outline Drawing



NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
 - ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Recommended PCB Layout


List of Material

Item	Description	
J1, J2	PC Mount SMA Connector	
J3, J4, J5	DC Pins	
C1, C2	1000 pF Capacitor, 0603 Pkg.	
C3, C4	100 pF Capacitor, 0402 Pkg.	
L1	3.9 nH Inductor, 0402 Pkg.	
U1	HMC280MS8G Amplifier	
PCB*	103104 Evaluation Board	
*Circuit Board Material: Roger 4350		

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Application Circuit

Note 1: Vdd1 and Vdd2 may be connected to a common Vdd feed after RF choke.

Recommended Component Values		
L1	3.9 nH	
C1	1000 pF	
C2	100 pF	

Note 2: L1 should be located ≤ 0.020 " (0.508 mm) from pin 8 (Vdd1).