Multiple-Output Network Clock Generator

Abstract

General Description The MAX9489 clock generator provides multiple clock outputs, ideal for network routers. The MAX9489 provides 15 buffered clock outputs, each independently programmable to any of 10 individual frequencies: $133 \mathrm{MHz}, 125 \mathrm{MHz}, 100 \mathrm{MHz}, 83 \mathrm{MHz}, 80 \mathrm{MHz}, 66 \mathrm{MHz}$, $62.5 \mathrm{MHz}, 50 \mathrm{MHz}, 33 \mathrm{MHz}$, or 25 MHz . All of the outputs are single-ended LVCMOS. The MAX9489 is controlled through its $I^{2} \mathrm{C}^{\text {TM }}$ interface. At power-up, the frequency of output CLK1 is set by the tri-level input SEL to $100 \mathrm{MHz}, 125 \mathrm{MHz}$, or 133 MHz , while all other outputs are logic low. All outputs are then programmable to any available frequency through the ${ }^{2}{ }^{2} \mathrm{C}$ interface. Additionally, all output frequencies are adjustable up or down, by a margin of 5% or 10%, through the $1^{2} \mathrm{C}$ interface. The MAX9489 requires a 25 MHz reference that can be either a crystal or an external clock signal. The MAX9489 requires a +3.0 V to +3.6 V power supply and is available in a 32-pin thin QFN package with an exposed pad for heat removal.

Applications
Network Routers
Telecom/Networking Equipment
Storage Area Networks/Network Attached Storage

Pin Configuration

${ }^{12} \mathrm{C}$ is a trademark of Philips Corp.
Purchase of $I^{2} C$ components of Maxim Integrated Products, Inc., or one of its sublicensed Associated Companies, conveys a license under the Philips $A^{2} C$ Patent Rights to use these components in an $P^{2} C$ system, provided that the system conforms to the ${ }^{2}$ C Standard Specification as defined by Philips.

- 15 LVCMOS Outputs with 10 Independently Programmable Frequencies: 133MHz, 125MHz, $100 \mathrm{MHz}, 83 \mathrm{MHz}, 80 \mathrm{MHz}, 66 \mathrm{MHz}, 62.5 \mathrm{MHz}, 50 \mathrm{MHz}$, 33 MHz , and 25 MHz
- 25MHz Crystal or Clock Input Reference
- Programmable Through I ${ }^{2}$ C Interface
- Programmable Output Frequency Margin of $\pm 5 \%$ or $\pm 10 \%$
- Pin-Selectable Power-Up Frequency for CLK1 Output: $100 \mathrm{MHz}, 125 \mathrm{MHz}$, or 133 MHz
- Low Output Period Jitter: < 48psRMS
- Output-to-Output Skew < 200ps
- Available in 32 -Lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.8 \mathrm{~mm}$, Thin QFN Package
- Operates from +3.0V to +3.6V Power Supply
- Power Dissipation 450mW (typ)
- Extended Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9489ETJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN-EP*
		$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.8 \mathrm{~mm}$

*EP = Exposed pad.
Typical Operating Circuit

Multiple-Output Network Clock Generator

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Range .. $+150^{\circ} \mathrm{C}$ to C
Maximum Junction Temperature.........................$~$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{A} \mathrm{V}_{\mathrm{DD}}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=\mathrm{AV} \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
CLOCK INPUT (X1)					
Input High Level	$\mathrm{V}_{\mathrm{IH} 1}$		2.0		V
Input Low Level	VIL1			0.8	V
Input Current	$\mathrm{IIL1}^{1} \mathrm{l}_{\mathrm{H} / 1}$	$V_{X-}=0$ to $V_{D D}$	-5	+5	$\mu \mathrm{A}$
CLOCK OUTPUTS (CLK_)					
Output High Level	VOH	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	$\begin{gathered} V_{D D}- \\ 0.2 \end{gathered}$		V
		$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4		
		$\mathrm{IOH}=-8 \mathrm{~mA}$	2.1		
Output Low Level	VoL	$\mathrm{IOL}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{IOL}=4 \mathrm{~mA}$		0.4	
		$\mathrm{IOL}=8 \mathrm{~mA}$		0.75	
Output Short-Circuit Current	IOS	CLK_ = V ${ }_{\text {DD }}$ or GND		45	mA
Output Capacitance	Co	(Note 2)		5	pF
TRI-LEVEL INPUTS (SEL, SA0, SA1)					
Input High Level	$\mathrm{V}_{\mathrm{IH} 2}$		2.5		V
Input Low Level	VIL2			0.8	V
Input Open Level	$\mathrm{V}_{\mathrm{IO} 2}$		1.35	1.90	V
Input Current	$\mathrm{I}_{\mathrm{LL} 2,} \mathrm{I}_{\mathrm{H} 2}$	$\mathrm{V}_{\mathrm{IL} 2}=0$ or $\mathrm{V}_{\text {IH2 }}=\mathrm{V}_{\mathrm{DD}}$	-10	+10	$\mu \mathrm{A}$
SERIAL INTERFACE (SCL, SDA) (Note 3)					
Input High Level	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$	VDD	V
Input Low Level	VIL		0	$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
Input leakage Current	$\mathrm{I}_{\mathrm{IH},} \mathrm{I}_{\text {IL }}$		-1	+1	$\mu \mathrm{A}$
Low-Level Output	VOL	ISINK $=4 \mathrm{~mA}$	0	0.4	V
Input Capacitance	Ci	(Note 2)		10	pF

Multiple-Output Network Clock Generator

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=A V_{D D}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=\mathrm{AV} D \mathrm{CD}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
Digital Power-Supply Voltage	VDD		3.0		3.6	V
Analog Power-Supply Voltage	$A V_{D D}$		3.0		3.6	V
Total Supply Current		$C_{L}=10$ pf (with all CLK_outputs at 133 MHz)		134	160	mA
Total Power-Down Current	IPD	All clock registers $=0 \times 00$		38	47	mA

AC ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=A V_{D D}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, C L=10 \mathrm{pF}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{DD}}=A V_{D D}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, with all CLK_ outputs at 133 MHz .) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUTS (CLK_)						
Crystal Frequency Tolerance	$\Delta f_{\text {A }}$		-50		+50	ppm
Output-to-Output Skew	tSKO	Any two CLK_ outputs			200	ps
Rise Time	tR1	20\% VDD to 80\% VDD		1.8	2.5	ns
Fall Time	tF1	$80 \% V_{\text {DD }}$ to $20 \% V_{\text {DD }}$		1.8	2.5	ns
Duty Cycle			40		60	\%
Output Period Jitter	Jp	RMS		53		ps
Power-Up Time	tpo	V ${ }_{\text {DD }}>2.8 \mathrm{~V}$ to PLL lock		2		ms
PLL Lockup Time	tLock	PLL dividing ratio set to PLL lock		20		$\mu \mathrm{s}$
Margin Accuracy		Select $\pm 5 \%$ or $\pm 10 \%$ margin	-1		+1	\%

Multiple-Output Network Clock Generator

SERIAL INTERFACE TIMING

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{A} \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$.) (Note 1, Figure 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Serial Clock	fSCL			400	kHz
Bus Free Time Between STOP and START Conditions	tBuF		1.3		$\mu \mathrm{s}$
Hold Time, Repeated START Condition	thD, STA		0.6		$\mu \mathrm{s}$
Repeated START Condition Setup Time	tSU,STA		0.6		$\mu \mathrm{s}$
STOP Condition Setup Time	tsu,STO		0.6		$\mu \mathrm{s}$
Data Hold Time Master	thD, DAT	(Note 4)	15	900	ns
Data Hold Time Slave	thD, DAT	(Note 4)	15	900	ns
Data Setup Time	tSU,DAT		100		ns
SCL Clock Low Period	tLow		1.3		$\mu \mathrm{s}$
SCL Clock High Period	tHIGH		0.7		$\mu \mathrm{s}$
Rise Time of SDA and SCL, Receiving	t_{R}	(Notes 2, 5)	$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	300	ns
Fall Time of SDA and SCL, Receiving	t_{F}	(Notes 2, 5)	$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	300	ns
Fall Time of SDA, Transmitting	tF,TX	(Notes 2, 5)	$\begin{gathered} 20+ \\ 0.1 C_{b} \end{gathered}$	250	ns
Pulse Width of Spike Suppressed	tSP	(Notes 2, 6)	0	50	ns
Capacitive Load for Each Bus Line	Cb	(Note 2)		400	pF

Note 1: All DC parameters tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Guaranteed by design.
Note 3: No high output level is specified but only the output resistance to the bus. For ${ }^{12} \mathrm{C}$, the high-level voltage is provided by pullup resistors on the bus.
Note 4: A master device must provide a hold time of at least 300ns for the SDA signal (referred to $\mathrm{V}_{\text {IL }}$ of the SCL signal) to bridge the undefined region of SCL's falling edge.
Note 5: $\mathrm{Cb}_{\mathrm{b}}=$ total capacitance of one bus line in pF . tR and tF measured between $0.3\left(\mathrm{~V}_{\mathrm{DD}}\right)$ and $0.7\left(\mathrm{~V}_{\mathrm{DD}}\right)$.
Note 6: Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns .

Multiple-Output Network Clock Generator

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

A: $100 \mathrm{MHz}, 100 \mathrm{mV} / \mathrm{div}$
B: $25 \mathrm{MHz}, 100 \mathrm{mV} / \mathrm{div}$

Multiple-Output Network Clock Generator

Pin Description

PIN	NAME	
1,29	GND	Digital Ground
2	SCL	Serial Clock Input. Serial interface clock.
3	SDA	Serial Data I/O. Data I/O of serial interface.
4	SEL	Frequency Select for CLK1. Selects the frequency for CLK1 at power-up. SEL is a tri-level input. Force SEL high for CLK1 = 100MHz. Leave SEL open for CLK1 = 125MHz. Force SEL low for CLK1 = 133MHz.
5	AVDD	Power-Supply Input for Analog Circuits
6	X1	Crystal Connection or Clock Input. If using a 25MHz crystal, connect it to X1 and X2. If using a reference
7	X2	clock, connect the clock signal to X1, and leave X2 floating. See the Typical Operating Circuit.

Multiple-Output Network Clock Generator

Detailed Description

The MAX9489 clock generator produces 15 clock signals, CLK1 through CLK15. Each output is programmable through control registers to any of 10 individual frequencies: $133 \mathrm{MHz}, 125 \mathrm{MHz}, 100 \mathrm{MHz}, 83 \mathrm{MHz}$, $80 \mathrm{MHz}, 66 \mathrm{MHz}, 62.5 \mathrm{MHz}, 50 \mathrm{MHz}, 33 \mathrm{MHz}$, or 25 MHz . Additionally, the frequency of all outputs can be changed $\pm 5 \%$ or $\pm 10 \%$ through the frequency-margin control register. At power-up, the frequency of CLK1 is pin programmable to $100 \mathrm{MHz}, 125 \mathrm{MHz}$, or 133 MHz , and all other CLK outputs are logic low. The required 25 MHz input reference frequency can be either a crystal or an external clock signal. Figure 1 shows the MAX9489 functional block diagram.
The MAX9489 is programmed through its ${ }^{2}{ }^{2} \mathrm{C}$ serial interface. The $\mathrm{I}^{2} \mathrm{C}$ address is selected with two, tri-level inputs, allowing up to nine MAX9489 devices to share the same $I^{2} \mathrm{C}$ bus. Power-supply and logic interface signals are +3.0 V to +3.6 V . The operating state of the MAX9489 is set by writing to the control registers, and read by reading the control registers.

Reference Frequency Input A reference frequency is required for the MAX9489. The reference can be a 25 MHz crystal or an external clock signal. If using a 25 MHz crystal, connect it across X1 and X2, and connect 10pF capacitors from X1 and

Figure 1. MAX9489 Functional Diagram

X2 to GND (see the Typical Operating Circuit). If using an external clock, connect the signal to X 1 and leave X2 floating.

Serial Interface

The MAX9489 is programmed through its I²C serial interface. This interface has a clock, SCL, and a bidirectional data line, SDA. In an ${ }^{2}$ C system, a master, typically a microcontroller, initiates all data transfers to and from slave devices, and generates the clock to synchronize the data transfers.

The MAX9489 operates as a slave device. The timing of the SDA and SCL signals is detailed in Figure 2, the Serial Interface Timing diagram. SDA operates as both an input and an open-drain output. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SDA. SCL operates only as an input. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SCL if there are multiple masters on the 2 wire bus, or if the master in a single-master system has an open-drain SCL output.

Bit Transfer
One data bit is transferred during each SCL clock cycle. SDA must remain stable during the high period of SCL, because changes in SDA while SCL is high are START and STOP control signals. Both SDA and SCL idle high.

START and STOP Conditions

A master signals the beginning of a transmission with a START condition by transitioning SDA from high to low while SCL is high (Figure 2). When communication is complete, a master issues a STOP condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission.

Acknowledge Bits

After each 8 bits transferred, the receiving device generates an acknowledge signal by pulling SDA low for the entire duration of the 9th clock pulse. If the receiving device does not pull SDA low, a not-acknowledge is indicated (Figure 3).

Device Address
The MAX9489 has a 7-bit device address, pin configured by the two tri-level address inputs SA1 and SA0. To select the device address, connect SA1 and SA0 to VDD, GND, or leave open, as indicated in Table 1. The MAX9489 has nine possible addresses, allowing up to nine MAX9489 devices to share the same interface bus.

Multiple-Output Network Clock Generator

Figure 2. Serial Interface Timing

Table 1. Device $I^{2} C$ Address Selection

PIN		DEVICE ADDRESS
SA1	SAO	
Open	VDD	1100010
Open	GND	1100100
Open	Open	1101000
GND	VDD	1110000
GND	GND	1101001
GND	Open	1101100
VDD	VDD	1110100
VDD	GND	1110010
VDD	Open	1110001

Writing to the MAX9489
Writing to the MAX9489 begins with a START condition (Figures 3 and 4). Following the START condition, each pulse on SCL transfers 1 bit of data. The first 7 bits comprise the device address (see the Device Address section). The 8th bit is low to indicate a write operation. An acknowledge bit is then generated by the MAX9489, signaling that it recognizes its address. The next 8 bits form the register address byte (Table 2) and determine which control register will receive the following data byte. The MAX9489 then generates another acknowledge bit. The data byte is then written into the addressed register of the MAX9489. An acknowledge bit by the MAX9489 followed by a required STOP condition by the master complete the communication. To write to the device again, repeat the entire write procedure; $I^{2} \mathrm{C}$ burst write mode is not supported by the MAX9489.

Reading the MAX9489 Setup
Reading from the MAX9489 registers begins with a START condition and a device address with the write bit set low, then the register address that is to be read, followed by a repeated START condition and a device address with the write bit set high, and finally the data are shifted out (Figure 4). Following a START condition, the first 7 bits comprise the device address. The 8th bit is low to indicate a write operation (to write in the following register address). An acknowledge bit is then generated by the MAX9489, signaling that it recognizes its address. The next 8 bits form the register address, indicating the location of the data to be read, followed by another acknowledge, again generated by the MAX9489. The master then produces a repeated START condition and readdresses the device, this time with the R/W bit high to indicate a read operation (Figure 4). The MAX9489 generates an acknowledge bit, signaling that it recognizes its address. The data byte is then clocked out of the MAX9489. A final notacknowledge bit, generated by the master (not required), and a STOP condition, also generated by the master, complete the communication. To read from the device again, the entire read procedure is repeated; $1^{2} \mathrm{C}$ burst read mode is not supported by the MAX9489.

Device Control Registers

The MAX9489 has 17 control registers. The register addresses and functions are shown in Table 2. The first 16 registers are used to set the 15 outputs, with register 0×00 controlling all outputs simultaneously and the rest mapped to individual outputs. Register 0x10 accesses the frequency-margin control. All other addresses are reserved and are not to be used.

Multiple-Output Network Clock Generator

Figure 3. ${ }^{2}$ C Address and Acknowledge

Figure 4. ${ }^{2}$ C Interface Data Structure

Setting the Clock Frequencies

Each CLK_ output has an associated control register. The contents of the registers determine the frequency of their associated outputs. Table 3 provides the frequency mapping for the registers.
Example: To program CLK3 to 80 MHz , first address the device with R/W low, then send register address byte 0×03 followed by data byte 0×05 (Figure 5).

Frequency Margin Control

Frequency margin is controlled through control register 0×10. Table 4 provides the mapping for the available margins. A selected margin applies to all outputs.
Example: To increase all clock outputs by 5%, address the device, then send register address byte 0×10 followed by data byte 0×01.

Power Supply
The MAX9489 uses a 3.0 V to 3.6 V power supply connected to V_{DD}, and 3.0 V to 3.6 V connected to $\mathrm{AV}_{\mathrm{DD}}$.

Bypass each $V_{D D}$ at the device with a $0.1 \mu \mathrm{~F}$ capacitor. Also bypass $A V_{D D}$ at the device with a $0.1 \mu \mathrm{~F}$ capacitor. Additionally, use a bulk bypass capacitor of $10 \mu \mathrm{~F}$ where power enters the circuit board.

Board Layout Considerations

As with all high-frequency devices, board layout is critical to proper operation. Place the crystal as close as possible to X1 and X2, and minimize parasitic capacitance around the crystal leads. Ensure that the exposed pad makes good contact with GND.

Chip Information
TRANSISTOR COUNT: 15,219
PROCESS: CMOS

Multiple-Output Network Clock Generator

Table 2. Register Address Mapping

REGISTER ADDRESS BYTE	REGISTER FUNCTION
0×00	Broadcast to all CLK registers
0×01	CLK1
0×02	CLK2
0×03	CLK3
0×04	CLK4
0×05	CLK5
0×06	CLK6
0×07	CLK7
0×08	CLK8
0×09	CLK9
$0 \times 0 \mathrm{~A}$	CLK10
$0 \times 0 \mathrm{~B}$	CLK11
$0 \times 0 \mathrm{C}$	CLK12
$0 \times 0 \mathrm{D}$	CLK13
$0 \times 0 \mathrm{E}$	CLK14
$0 \times 0 \mathrm{~F}$	CLK15
0×10	Rrequency margin control
$0 \times 11-0 \times F F$	Reserved, do not use

Table 3. Output Frequency Control

CLK_REGISTER DATA BYTE	OUTPUT FREQUENCY (MHz)
0×00	Logic low *
0×01	133.3
0×02	125
0×03	100
0×04	83.3
0×05	80
0×06	66.6
0×07	62.5
0×08	50
0×09	33
$0 \times 0 A$	25

*Power-up default for CLK2 through CLK15.
Table 4. Output Frequency Margin Control

MARGIN REGISTER DATA BYTE	OUTPUT FREQUENCY (MHz)
0×00	0%
0×01	5%
0×02	10%
0×07	-5%
0×06	-10%

Figure 5. Example-Setting CLK3 to 80 MHz

Multiple-Output Network Clock Generator

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

