TENTATIVE TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA1310ANG

NTSC VIDEO, CHROMA, DEFLECTION, AND DISTORTION COMPENSATION IC (WITH YUV INTERFACE AND ACB)

TA1310ANG is Video Chroma and deflection signal. Processing IC for NTSC. On a 56 -pin shrink DIP package. TA1310ANG has deflection distortion compensation.
TA1310ANG uses an $\mathrm{I}^{2} \mathrm{C}$ Bus controls for controllings and settings.

FEATURES

Video Signal Processing

- Built-in Y delay line
- Black stretch
- DC restoration ratio compensation
- Aperture controlled sharpness
- Output for velocity scan modulation (VSM)
- White peak suppression (WPS)

Chroma Signal Processing

- Built-in chroma BPF / TOF
- $\quad \mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ outputs
- Color / BW situation output by read bus

Sync Signal Processing

- Counts down 32 fH
- Dual AFC
- Vertical AGC
- HD and VD outputs
- Vertical frequency fixed mode
- Horizontal and Vertical position alignment
- DC outputs for vertical centering

Text Signal Processing

- Analog RGB inputs
- Digital RGB inputs
- Halftone switch (Yм)
- Cutoff and drive alignment
- YUV inputs
- ACB

Deflection Correction Function

- Horizontal and Vertical amplitude adjustment
- Vertical linearity correction
- Vertical S correction
- Vertical EHT correction
- E / W parabola correction
- E / W corner correction
- E / W trapezium correction

BLOCK DIAGRAM

PIN FUNCTION

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
1	VSM OUT	VSM means Verocity Scanning Modulation.	4 MHz peak	
2	GND I	The terminal for GND of Video / Y / TEXT circuits.	-	
$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{IN}} \\ & \mathrm{G}_{\mathrm{IN}} \\ & \mathrm{~B}_{\mathrm{IN}} \end{aligned}$	The terminals for Analog RGB signal input. Input signals clamped by coupling capacitors. (*) : Even when not in use, connect to GND with a coupling capacitor.		
6	Y_{S} / Y_{M} IN	The terminal for switching of Analog RGB Mode and Half tone.		RGB Half Tone TV
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	OSD RIN OSD GIN OSD B IN	The terminals for Analog OSD RGB signal input. Input signals clamped by coupling capacitors. (*) : Even when not in use, connect to GND with a coupling capacitor.		

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
10	OSD Y ${ }_{\text {S }}$ IN	The terminal for switching of internal RGB signals and Analog OSD RGB signals (Pin $7,8,9)$.		Mainalog RGB Main GND
11	ABL IN	The terminal for the external unicolor and brightness control. ABL Gain and ABL start point can be set by using BUS.		OPEN 6.0 V
12	VK OUT	The terminal outputs signal in order to input in H-correction (Pin 42). The signal corresponds to RGB signal.		
$\begin{aligned} & 13 \\ & 14 \\ & 15 \end{aligned}$	R OUT G OUT B OUT	The terminals for RGB signal output.		
16	$\mathrm{V}_{\mathrm{CC}}(9 \mathrm{~V})$	The terminal for V_{CC} supply 9 V . The terminals is connected to 9 V (typ.).	-	
$\begin{aligned} & 17 \\ & 18 \\ & 19 \end{aligned}$	R Filter G Filter B Filter	Control the RGB output cutoff voltage, holding the standard pulse period comparator output to one vertical period. At ACB ON, the filters operate so that the IK IN (pin 20) voltage equals the value determined by the bus (when RBG cutoff : center, $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.) The filters must be low leakage current filters.		

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
20	IK IN	Terminal for detection of IK feedback signal. Leakage canceller incorporated.		
21	V Centering	The terminal for the DAC output that controlled by BUS (V-center).		
22	EW FB	The terminal for E / W feedback.		
23	EW OUT	The terminal for output of E / W drive signal.		
24	V OUT	The terminal for output of Vertical drive signal.		
25	V NFB	The terminal for input of Vertical negative feedback. If input voltage is less than 2 V, V-Guard function works and blanks RGB signal output.		

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
26	V AGC Filter	The terminal to be connected a capacitor for Automatic gain control of Vertical RAMP signal.		
27	V RAMP	The terminal to be connected a capacitor to generate Vertical RAMP signal.		
28	EHT V	The terminal for the Vertical EHT input.		
29	SCL	The terminal for input of $\mathrm{I}^{2} \mathrm{C}$ BUS clock.		
30	SDA	The terminal for input / output of $I^{2} \mathrm{C}$ BUS data.		

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
31	GND II	The terminal for the GND of DEF / I ${ }^{2} \mathrm{C} / \mathrm{EW}$.	-	
32	HD OUT	The terminal for the HD pulse. The suspension period of the Black peak stretching is extended by inputting the external pulse.		
33	VD OUT	The terminal for the VD pulse.		$\square \square \square_{0 \mathrm{v}}^{5 \mathrm{v}}$
34	FBP IN	The terminal for the flyback pulse to control H-BLK and H-AFC.		
35	H OUT	The terminal for the Horizontal output.		

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
36	SYNC OUT	The terminal for output of the synchronizing signal that was separated in the synchronous separation circuit. This terminal is of the open collector system. Connect the pull-up resistor.		
37	DEF V_{CC}	The terminal for V_{CC} supply 9 V of DEF.	(Caution) Be sure to design the power supply so that when the power is Off, $D E F V_{C C}$ is below 1.9 V .	
38	Y / SYNC IN	The terminal for input of the synchronous separation circuit. Input via clamp capacitor.		
39	V SEP Filter	The terminal to be connected a capacitor for the Vertical synchronous separation circuit.		
40	AFC I Filter	Connect the filter for horizontal AFC I detection. The frequency of the horizontal output varies depending on the voltage at this pin.		

$\begin{aligned} & \text { PIN } \\ & \text { No. } \end{aligned}$	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
41	32 fh VCO	Connect the ceramic oscillator for horizontal oscillation. The oscillator to be used is CSBLA503KECZF30, made by Murata electronics.		
42	H Correction	The terminal to correct distortion of picture in the case of high-tension fluctuation. Input the AC component of high tension fluctuation. This terminal can be inputted VK output (Pin 12).		
43	DL OUT	The terminal outputs delayed Y signal. Input this signal to Y IN (Pin 54) via a capacitor.		
44	GND III	The terminal for GND of DEF linear / Chroma circuits.	-	
45	CHROMA IN	The terminal for the chroma input.		$\begin{aligned} & \text { DC : } 1.77 \mathrm{~V} \\ & \text { AC : Burst } 286 \mathrm{mV} \mathrm{p}_{\mathrm{p}-\mathrm{p}} \end{aligned}$

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
46	APC	The terminal to be connected APC filter. The oscillation frequency of VCXO varies depending on the voltage at this pin.		
47	B-Y OUT	The terminal outputs the B-Y signal.		$\begin{aligned} & \mathrm{DC}: 2.2 \mathrm{~V} \\ & \mathrm{AC}: 300 \mathrm{~m} \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \\ & \\ & \text { (Rainbow color } \\ & \text { bar) } \end{aligned}$
48	R-Y OUT	The terminal outputs the R-Y signal.		$\begin{aligned} & \mathrm{DC}: 2.2 \mathrm{~V} \\ & \mathrm{AC}: 300 \mathrm{mV} \mathrm{p}_{\mathrm{p} \text { p }} \\ & \\ & \text { (Rainbow color } \\ & \text { bar) } \end{aligned}$
49	X'tal	The terminal to be connected with a 3.579545 MHz X'tal oscillator. The oscillated frequency, f_{0}, is controlled by series capacitors, and frequency adjustment range can be expanded by putting capacitors in parallel.		
50	CW OUT	The terminal for CW output generated in VCXO.		

PIN No.	SYMBOL	FUNCTION	INTERFACE	I / O SIGNAL
51	$\mathrm{V}_{\mathrm{Cc}}(5 \mathrm{~V})$	The terminal for V_{CC} supply 5 V .	-	
$\begin{aligned} & 52 \\ & 53 \end{aligned}$	$\begin{aligned} & \text { R-Y IN } \\ & \text { B-Y IN } \end{aligned}$	The terminals for the $\mathrm{R}-\mathrm{Y}$ / B-Y signal input. Input signals clamped by coupling capacitors. (*) : Even when not in use, connect to GND with a coupling capacitor.		
54	Y IN	The terminal for the Y signal input. Input the Y signals clamped by coupling capacitors.		
55	BLACK PEAK DET	The terminal to be connected the filter controlling the black stretching gain of the black stretching circuit. The black stretching gain varies depending on the voltage at this pin.		
56	$\begin{gathered} \text { DC } \\ \text { RESTORATION } \\ \text { CORR. } \end{gathered}$	The terminal to be connected capacitor for DC restoration correction control. Open this pin if not use the DC restoration correction.		

BUS CONTROL MAP

Slave address : 88H (WRITE) / 89H (READ)

	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
00	ABL POINT		UNI-COLOR					
01	TEST	BRIGHTNESS						
02	Y-MUTE	COLOR						
03	TINT							TOF-SW
04	SHARPNESS						ABL GAIN	
05	RGB BRIGHTNESS				VERTICAL POSITION			UV-SW
06	G DRIVE GAIN							V-AGC
07	B DRIVE GAIN							VSM-G
08	R CUT OFF							
09	G CUT OFF							
0A	B CUT OFF							
0B	HORIZONTAL POSITION					B. S. POINT		
OC	VERTICAL SIZE						ZOOM	SERVICE
OD	HORIZONTAL SIZE						HV-FIX	
OE	E / W PARABOLA					V-S CORRECTION		
OF	V-LIN CORRECTION				SUB CONTRAST			
10	E / W TRAPEZIUM				E / W CORNER			
11	COL- γ	ACB MODE		V-BLK START PHASE				
12	$\begin{gathered} \text { RY / GY } \\ \text { PHASE / GAIN } \end{gathered}$		DL- MODE	V-BLK STOP PHASE				
13	VERTICAL CENTERING							RGB- γ
14	V CENTERING DAC SW	BASE BAND TINT						

READ MODE

	PORES	Y-IN	RGB-OUT	H-OUT	V-OUT	EW-OUT	COLOR	ED2

The preset value for D_{7} is 1 . The preset values for D_{0} to D_{6} are 0 .

BUS CONTROL CHARACTERISTICS BY FUNCTION

Write mode

ITEM	DATA		No. OF BITS	PRESET VALUE
Unicolor (UNI-COLOR) / RGB Contrast	000000 ; -18dB	111111 ; 0 dB	6	$\begin{gathered} \hline-18 \mathrm{~dB} \\ (000000) \end{gathered}$
Brightness (sub-brightness included) (BRIGHTNESS)	0000000 ; -40 (IRE)	1111111 ; +40 (IRE)	7	$\begin{aligned} & \hline-40 \text { (IRE) } \\ & (0000000) \end{aligned}$
Color (sub-color included) (COLOR)	0000000 ; -	1111111 ; +6 dB	7	$\begin{gathered} -\infty \\ (0000000) \end{gathered}$
Tint (sub-tint included) (TINT)	0000000 ; -32 ${ }^{\circ}$	1111111 ; +32 ${ }^{\circ}$	7	$\begin{gathered} \pm 0^{\circ} \\ (1000000) \end{gathered}$
Picture Sharpness (PICTURE-SHARPNESS)	000000; -6 dB	$\begin{aligned} & 111111 ;+12 \mathrm{~dB} \\ & (\text { at } 2.4 \mathrm{MHz}) \end{aligned}$	6	$\begin{gathered} +6 \mathrm{~dB} \\ (100000) \end{gathered}$
Sub Contrast (SUB-CONTRAST)	0000; -3 dB	1111 ; +3 dB	4	$\begin{aligned} & -3 \mathrm{~dB} \\ & (0000) \end{aligned}$
DC Output for Vertical Centering (VERTICAL CENTERING)	0000000; 1.0 V	111111 ; 4.0 V	7	$\begin{aligned} & \text { Center } \\ & (1000000) \end{aligned}$
External / Internal Color Difference Switching (UV-SW)	0 ; INT	1 ; EXT	1	$\begin{gathered} \text { INT } \\ (0) \end{gathered}$
RGB Brightness (RGB-BRIGHTNESS)	0000 ; -20 (IRE)	1111 ; +20 (IRE)	4	$\begin{aligned} & \text { Center } \\ & \text { (1000) } \end{aligned}$
RGB Cut Off (RGB-CUTOFF)	$00000000 ;-0.5 \mathrm{~V}$ $00000000 ; 0.5 \mathrm{Vp}-\mathrm{p}$	$\begin{gathered} 11111111 ;+0.5 \mathrm{~V} \\ - \text { At bus control- } \\ 11111111 ; 1.5 \mathrm{Vp}-\mathrm{p} \\ \text {-IK input amplitude in ACB mode- } \end{gathered}$	8×3	$\begin{gathered} -0.5 \mathrm{~V} \\ (00000000) \end{gathered}$
G / B Drive Gain (GB-DRIVE GAIN)	0000000 ; -5dB	1111111 ; +3 dB	7×2	$\begin{aligned} & \text { Center } \\ & (1000000) \end{aligned}$
VSM Gain (VSM-G)	0 ; ON	1 ; OFF	1	ON (0)
Zoom Mode Switching (ZOOM)	0 ; Normal	1 ; ZOOM	1	Normal (0)
Black Stretching Start Point (B.S. POINT)	000; Min / black (black cor 111; MAX / 50		3	Black stretch OFF (000)
ABL Detection Voltage (ABL POINT)	00 ; MIN	11 ; MAX	2	Center (10)
ABL Sensitivity(ABL GAIN)	00 ; MIN	11 ; MAX	2	MIN (00)
Horizontal Position (HORIZONTAL POSITION)	$\begin{gathered} 00000 ;-3 \mu \mathrm{~s} \text { (lefl } \\ 11111 ;+3 \mu \mathrm{~s} \end{gathered}$		5	$\begin{gathered} \text { Center } \\ (10000) \end{gathered}$
Horizontal and Vertical Frequency Fixed Mode (HV-FIX)	00 / 01 ; normal 10 ; AFC OFF 11 ; AFC OFF	$\begin{aligned} & \& V=263(H) \\ & \& V=262.5(H) \end{aligned}$	2	Normal (00)
Vertical Pulse Phase (VERTICAL-PULSE PHASE)	000 ; OH	111 ; 7H DELAY	3	$\begin{aligned} & 0(\mathrm{H}) \\ & (000) \end{aligned}$
Service Mode (SERVICE)	0 ; normal	1 ; Service mode(V-Stop)	1	Normal (0)
Test Mode (TEST MODE)	1 ; normal	0 ; RGB BLK OFF	1	Normal (1)

ITEM	DATA	No. OF BITS	PRESET VALUE
TOF Switching (TOF-SW)	0 ; BPF mode 1; TOF mode	1	BPF (0)
V-AGC Time Constant (V-AGC)	0 ; fast 1; slow	1	Fast (0)
Vertical Amplitude (VERTICAL SIZE)	000000 ; MIN 111111 ; MAX	6	$\begin{aligned} & \text { Center } \\ & \text { (100000) } \end{aligned}$
Vertical Linearity Correction (V-LIN CORRECTION)	0000 ; Lower stretch 1111 ; Upper stretch	4	$\begin{aligned} & \text { Center } \\ & (1000) \end{aligned}$
Vertical S Correction (V-S CORRECTION)	000 ; Reverse S MAX 111 ; S MAX	3	(000)
Horizontal Amplitude (HORIZONTAL SIZE)	000000 ; MAX 111111 ; MIN	6	$\begin{aligned} & \text { Center } \\ & \text { (100000) } \end{aligned}$
E / W Parabola Correction (E / W PARABOLA)	00000 ; MIN 11111; MAX	5	$\begin{gathered} \text { Center } \\ (10000) \end{gathered}$
E/W Corner Correction (E / W CORNER)	0000 ; Vertical 1111 ; Vertical expansion compression	4	(0000)
E / W Trapezium Correction (E / W TRAPEZIUM)	0000 ; Expansion upward 1111 ; Expansion downward	4	$\begin{aligned} & \text { Center } \\ & \text { (1000) } \end{aligned}$
Color y Correction (COL-ү)	$0 ; \mathrm{ON}$ 1; OFF	1	OFF (1)
Y Mute (Y MUTE)	0 ; OFF 1; ON	1	ON (1)
RGB y Correction (RGB-y)	0 ; OFF 1; ON	1	OFF (0)
DL Mode Switching (DL-MODE)	0 ; Through 1; ON	1	Through (0)
ACB Mode Switching (ACB-MODE)	00 ; ACB OFF \& S / H LOW 01 ; ACB OFF (Bus control) 10 ; ACB ON \& I-DET normal 11 ; ACB ON \& I-DET×3	2	S / H LOW (00)
Relative Phase Amplitude Switching (RY / GY PHASE / GAIN)	$00 ;$ NTSC STD $01 ;$ DVD STD $10 ;$ NTSC (T) $11 ;$ A-TV STD	2	TSB STD (10)
Vertical Blanking Start Phase (V-BLK START PHASE)	00000 ; Vth (Hi) 11111 ; Vth (Lo)	5	(00000)
Vertical Blanking Stop Phase (V-BLK STOP PHASE)	00000 ; Vth (Lo) 11111 ; Vth (Hi)	5	(00000)
Base Band Tint	$\begin{aligned} & 0000000 ;+60 \mathrm{deg} \\ & \text { *1000000 (Center) :+6 deg } \end{aligned}$	7	$\begin{aligned} & \text { Center } \\ & \text { (1000000) } \end{aligned}$
V CenteringDAC Output switch(V Centering DAC SW)	0 ; Interlocking E / W trapezium correction (E / W trapezium correction : $\pm 12.5 \%$) 1; Non-interlocking E / W trapezium correction (E / W trapezium correction : $\pm 4.5 \%$)	1	NonInterlocking (1)

READ MODE

Slave address : 89H

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
PONRES	Y-IN	RGB-OUT	H-OUT	V-OUT	EW-OUT	COLOR	ED2

ITEM		DATA
Power On Reset (PORES)	0 ; Normal	1 ; Resister preset
Color Mode (COLOR)	$0 ; \mathrm{B} / \mathrm{W}$	1 ; NTSC
Self Diagnosis Result Output (RGB-OUT / Y-IN / H-OUT / V-OUT / E-W OUT / UV-IN)	0 ; NG	1 ; OK
ED2 Indentification	0 ; non-ED2	1 ; ED2

$I^{2} \mathrm{C}$ BUS COMMUNICATIONS, RECEIVE METHOD

Start and stop condition

Bit transfer

SDA

Acknowledgement

Data receive format

When data are received, the master transmitter changes to a receiver immediately after the first acknowledgement and the slave receiver changes to a transmitter.
The master always creates the stop condition.
Details are provided in the Philips $\mathrm{I}^{2} \mathrm{C}$ specifications.

Option data transmit format

S	Slave address	0	A	1	Subaddress	A	Transmit data 1	. \cdot	Transmit data n	A	P
$\dagger_{\text {MSB }}^{1}$	7 bits			${ }_{\text {MSB }}$	7 bits		8 bits		8 bits		

In the above method, the subaddresses are automatically incremented from the specified subaddress and data are set.

Purchase of TOSHIBA I ${ }^{2} \mathrm{C}$ components conveys license under the Philips $\mathrm{I}^{2} \mathrm{C}$ patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ standard specification as defined by Philips.

MAXIMUM RATINGS $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

CHARACTERISTICS	SYMBOL	RATING	UNIT
Power Supply Voltage $(5 \mathrm{~V} / 9 \mathrm{~V})$	$\mathrm{V}_{\text {CCmax }}$	$7 / 12$	V
Input Signal Voltage $(5 \mathrm{~V} / 9 \mathrm{~V})$	einmax	$5 / 9$	$\mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
Power Dissipation (Note)	P_{D}	1920	mW
Power Dissipation Reduction Rate	$1 / \mathrm{Qja}$	15.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	$-20 \sim 65$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note: See the figure below.

Fig. Temperature reduction curve for power dissipation

OPERATING CONDITION

ITEM	DATA AND CONDITIONS	MIN	TYP.	MAX	UNIT
Power Supply Voltage	Pin 16, Pin 37	8.7	9.0	9.3	V
	Pin 51	4.8	5.0	5.2	
Pin 54 Y Input Signal Level	100% white, including synchronization	0.9	1.0	1.1	V_{p-p}
Pin 45 Chroma Input Signal Level	TOF : off, burst level	100	300	400	$m V_{p-p}$
	TOF : on, burst level	100	300	400	
Pin 38 Sync Signal Input Level	100\% white, including synchronization	0.9	1.0	1.1	V_{p-p}

Note: Be sure to design the power supply so that when the power is Off, DEF V_{CC} is below 1.9 V .

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} / 9 \mathrm{~V}$, DEF $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$, unless otherwise specified)
Current dissipation

PIN NAME	SYMBOL	TEST CIR- CUIT	CURRENT DISSIPATION			UNIT	REMARKS
			MIN	TYP.	MAX		
$5 \vee V_{C C}$	ICC1	-	32.50	38.34	45.30	mA	-
$9 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$	ICC2	-	48.54	57.44	67.78	mA	-
DEF V_{CC}	$\mathrm{I}_{\mathrm{CC} 3}$	-	19.70	23.31	27.50	mA	-

DC CHARACTERISTICS

Pin voltage

PIN	PIN NAME	$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	MIN	TYP.	MAX	UNIT
1	VSM out	V_{1}	4.10	4.30	4.50	V
2	GND1	V_{2}	-	0.00	-	
3	R in	V_{3}	3.40	3.70	4.00	
4	G in	V_{4}	3.40	3.70	4.00	
5	B in	V_{5}	3.40	3.70	4.00	
6	$\mathrm{Ys} / \mathrm{Ym}$ in	V_{6}	-	0.00	0.20	
7	OSD R in	V_{7}	5.00	5.50	6.00	
8	OSD G in	V_{8}	5.00	5.50	6.00	
9	OSD B in	V_{9}	5.00	5.50	6.00	
10	OSD Ys in	V_{10}	-	0.00	0.20	
11	ABL in	V_{11}	5.70	6.00	6.30	
12	VK out	V_{12}	4.85	5.00	-	
13	R out	V_{13}	1.20	1.60	2.00	
14	G out	V_{14}	1.20	1.60	2.00	
15	B out	V_{15}	1.20	1.60	2.00	
16	$\mathrm{V}_{\text {CC }}(9 \mathrm{~V})$	V_{16}	-	9.00	-	
17	R Filter	V_{17}	2.1	2.5	2.9	
18	G Filter	V_{18}	2.1	2.5	2.9	
19	B Filter	V_{19}	2.1	2.5	2.9	
20	IK in	V_{20}	0.95	1.00	1.05	
21	V Centering	V_{21}	2.20	2.30	2.40	
22	EW FB	V_{22}	3.90	4.30	4.70	
23	EW out	V_{23}	0.60	0.70	0.80	
24	V out	V_{24}	0.60	0.70	0.80	
25	V NFB	V_{25}	4.60	5.00	5.40	
26	V AGC	V_{26}	1.80	2.00	2.20	
27	V RAMP	V_{27}	4.00	4.20	4.40	
28	EHT, V i n	V_{28}	4.80	4.90	5.00	

PIN	PIN NAME	$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	MIN	TYP.	MAX	UNIT
29	SCL	V_{29}	4.90	5.00	-	V
30	SDA	V_{30}	4.90	5.00	-	
31	D. GND GND2	V_{31}	-	0.00	-	
32	HD out	V_{32}	0.15	0.20	0.25	
33	VD out	V_{33}	4.90	5.00	5.10	
34	FBP in	V_{34}	1.30	1.60	1.90	
35	H out	V_{35}	1.50	1.80	2.10	
36	Sync out	V_{36}	8.80	9.00	-	
37	DEF V ${ }_{\text {CC }}$	V_{37}	-	9.00	-	
38	Sync in	V_{38}	2.80	3.00	3.20	
39	V Sep	V_{39}	6.00	6.40	6.80	
40	AFC1	V_{40}	7.20	7.50	7.80	
41	32fh VCO	V_{41}	5.70	5.90	6.10	
42	Curve correction	V_{42}	4.60	4.80	5.00	
43	DL out	V_{43}	0.30	0.80	1.00	
44	GND3	V_{44}	-	0.00	-	
45	Chroma in	V_{45}	1.59	1.77	1.95	
46	APC	V_{46}	1.39	1.72	2.05	
47	B-Y out	V_{47}	1.91	2.22	2.53	
48	R-Y out	V_{48}	1.91	2.22	2.53	
49	X'tal	V_{49}	3.80	4.00	4.20	
50	CW out	V_{50}	3.00	3.50	4.00	
51	$\mathrm{V}_{\mathrm{CC}}(5 \mathrm{~V})$	V_{51}	-	5.00	-	
52	R-Y in	V_{52}	2.85	3.00	3.15	
53	$B-Y$ in	V_{53}	2.85	3.00	3.15	
54	Y in	V_{54}	3.50	3.65	3.90	
55	Black peak detect	V_{55}	3.20	3.70	3.80	
56	DC restoration correction	V_{56}	2.90	3.00	3.10	

AC CHARACTERISTICS

Video stage

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
\#54 Voltage (Y Input Pedestal Clamp Voltage)	V54	-	(Note P1)	3.5	3.65	3.9	V
\#55 Voltage	V55	-	(Note P2)	3.2	3.7	3.8	V
\#56 Voltage	V56	-	(Note P3)	2.93	3.03	3.13	V
\#1 Voltage	V1	-	(Note P4)	4.1	4.25	4.4	V
Y Input Pedestal Clamp Error Voltage	$\triangle \mathrm{VPCO}$	-	(Note P5)	-7	± 0	+7	mV
	$\triangle \mathrm{VPC} 1$	-					
Y Input Pedestal Clamp Pulse Phase	TCL1	-	(Note P6)	2.8	2.9	3.0	$\mu \mathrm{s}$
	TCL2	-		4.8	4.9	5.0	
Y Input Dynamic Range	DR54	-	(Note P7)	1.0	1.25	1.4	V_{p-p}
\#56 Output Impedance	Z56	-	(Note P8)	4	5	6	$k \Omega$
Black Stretching Amplifier Maximum Gain	GBS	-	(Note P9)	1.3	1.4	1.5	(Times)
Black Level Compensation	BLC	-	(Note P10)	6	7	8	(IRE)
Black Peak Detection Level	$\triangle \mathrm{VBP}$	-	(Note P11)	-15	0	+15	mV
Black Stretching Start Point	PB001	-	(Note P12)	34	36	42	(IRE)
	PB111	-		51	54	61	
DC Restoration Rate Compensation Amp. Gain	GDTC	-	(Note P13)	1.45	1.55	1.65	(Times)
	GDTR	-		1.3	1.4	1.5	
Self-Diagnosis Y IN	SCDC	-	(Note P14)	-	OK	-	-
	SCAC	-					
Y Mute	GYM	-	(Note P15)	$-\infty$	-50	-45	dB
Sharpness Peak Frequency	FAP	-	(Note P16)	3.35	4.2	5.05	MHz
Sharpness Control Range	GMAX	-	(Note P17)	8	11	14	dB
	GMIN	-		-12	-7.5	-3	
Sharpness Control Center Characteristics	GCEN	-	(Note P18)	2	5	8	dB
Between Y IN and R OUT Delay Time	TY	-	(Note P19)	120	150	180	ns
VSM Peak Frequency	FVSM	-	(Note P20)	3	4	5	MHz
VSM Gain	GVSM0	-	(Note P21)	9	11	13	dB
	GVSM1	-		$-\infty$	-30	-20	
VSM Muting Threshold Voltage	VVM10	-	(Note P22)	0.7	0.8	0.9	V
	VVM6	-		2.15	2.25	2.35	
VSM High Speed Muting Response Time	THM1	-	(Note P23)	0	+50	+100	ns
	THM2	-					
	THM3	-					
	THM4	-					
VSM Phase	TVM24	-	(Note P24)	64	80	94	ns
	TVMFP	-		59	73	87	
	TVM2T	-		64	80	94	

Note 1: For testng, see the picture sharpness test circuit diagrams.
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Chroma stage

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
ACC Characteristic	va10	-	(Note C1)	93.5	110	127	$m V_{p-p}$
	va30	-		272	320	368	
	va300	-		276	325	374	
	va600	-		276	325	374	
	A	-		0.80	1.00	1.10	-
Color Difference Output Level	vB	-	(Note C2)	276	325	374	$m V_{p-p}$
	vR	-		276	325	374	
Color Difference Output Relative Amplitude	vRB	-	(Note C3)	0.90	1.00	1.10	-
Color Difference Output Demodulation Angle	өBcnt	-	(Note C4)	3.0	6.0	11.0	-
	θ Rcnt	-		91.0	94.0	99.0	
Color Difference Output Relative Phase	өRB	-	(Note C5)	85.0	89.0	91.0	-
Color Difference Output Tint Adjustment Characteristics	өBmax	-	(Note C6)	-35.0	-40.0	-46.5	。
	$\theta B m i n$	-		35.0	38.0	44.0	
	θ mmax	-		-35.0	-40.0	-46.5	
	θ mmin	-		35.0	38.0	46.0	
Supply Voltage Dependence of Color Difference Output	BVp	-	(Note C7)	5.00	8.00	11.00	\%
	RVp	-		5.00	8.00	11.00	
	$B \vee n$	-		-11.00	-8.00	-5.00	
	RV n	-		-11.00	-8.00	-5.00	
Identification Sensitivity	vCB	-	(Note C8)	3.00	4.10	6.00	$m V_{p-p}$
	vBC	-		3.00	4.40	6.00	
Bus Read Identification	bCB	-	(Note C9)	-	0	-	-
	bBC	-		-	1	-	
Color Difference Output Voltage Difference in 1H Period	vBH	-	(Note C10)	-	0	4.00	$m V_{p-p}$
	vRH	-		-	0	4.00	
Color Difference Output Voltage Difference Every 1H Period	vBG	-	(Note C11)	-	0	2.00	$m V_{p-p}$
	vRG	-		-	0	2.00	
Color Difference Output DC Voltage	VB	-	(Note C12)	1.91	2.22	2.53	V
	VR	-		1.91	2.22	2.53	
Difference between DC Voltage Axes of Color Difference Output	VRB	-	(Note C13)	-0.1	0	+0.1	V
X'tal Free-Run Frequency	Xf	-	(Note C14)	3.579345	3.579545	3.579745	MHz
APC Frequency Control Sensitivity	βf	-	(Note C15)	0.45	0.90	1.20	$\frac{\mathrm{Hz}}{\mathrm{mV}}$
APC Pull-In / Hold Range	fh+	-	(Note C16)	+250	+500	+2000	Hz
	fh-	-		-250	-500	-2000	
	fp+	-		+250	+500	+2000	
	fp-	-		-250	-500	-2000	
Residual Carrier Level	vBNo	-	(Note C17)	-	2.0	4.00	$m V_{p-p}$
	vRNo	-		-	2.0	4.00	
Residual Higher Harmonics Level	vBHN	-	(Note C18)	-	2.0	4.0	$m V_{p-p}$
	vRHN	-		-	2.0	4.0	

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
TOF-BPF Characteristic	GBL	-	(Note C19)	17.5	21.0	24.5	dB
	GBH	-		21.5	25.0	28.5	
	GTL	-		14.0	17.5	21.0	
	GTH	-		21.5	25.0	28.5	
CW Output Amplitude	vCW	-	(Note C20)	420	700	980	$m V_{p-p}$

Color difference stage

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Color Difference Input Clamp Voltage	VRY	-	(Note A1)	2.85	3.00	3.15	V
	VBY	-		2.85	3.00	3.15	
	DLRY	-	(Note A2)	115	150	185	ns
Color Diference Input / Output Delay Time	DLBY	-		115	150	185	
Uni	uR	-	(Note A3)	-17	-19	-21	dB
	uB	-		-17	-19	-21	
Color Adjustment Characteristics	cRmax	-	(Note A4)	6.5	8.0	9.5	dB
	cRmin	-		-	-	-20	
	cBmax	-		6.5	8.0	9.5	
	cBmin	-		-	-	-20	
RGB Output Half-Tone Characteristics	vRHo	-	(Note A5)	-5.5	-6	-6.5	dB
	vGHo	-		-5.5	-6	-6.5	
	vBHo	-		-5.5	-6	-6.5	
RGB Output Amplitude	vRSTD	-	(Note A6)	0.64	1.13	0.87	V_{p-p}
	vGSTD	-		0.39	0.50	0.53	
	vBSTD	-		1.14	1.35	1.56	
	vRDVD	-		0.90	1.07	1.23	
	vGDVD	-		0.51	0.61	0.70	
	vBDVD	-		1.14	1.35	1.56	
	vRTSB	-		0.78	0.92	1.06	
	vGTSB	-		0.34	0.41	0.47	
	vBTSB	-		1.14	1.35	1.56	
	vRDTV	-		0.98	1.13	1.34	
	vGDTV	-		0.34	0.41	0.47	
	vBDTV	-		1.14	1.35	1.56	
RGB Output Relative Amplitude	vRBSTD	-	(Note A7)	0.78	0.87	0.96	-
	vGBSTD	-		0.31	0.35	0.39	
	vRBDVD	-		0.72	0.80	0.88	
	vGBDVD	-		0.37	0.42	0.47	
	vRBTSB	-		0.62	0.69	0.76	
	vGBTSB	-		0.25	0.28	0.31	
	vRBDTV	-		0.78	0.87	0.96	
	vGBDTV	-		0.24	0.27	0.30	

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP．	MAX	UNIT
RGB Output Demodulation Angle	ӨRSTD	－	（Note A8）	86.0	90	94	－
	ӨGSTD	－		232.0	236	240.0	
	ӨBSTD	－		－4	0	4	
	ӨRDVD	－		86.0	90	94.0	
	өGDVD	－		240	244	248	
	өBDVD	－		－4	0	4	
	日RTSB	－		88.0	92	96.0	
	θ GTSB	－		236.0	240	244.0	
	ӨBTSB	－		－4	0	4	
	өRDTV	－		86.0	90	94.0	
	өGDTV	－		240.0	244	248.0	
	өBDTV	－		－4	0	4	
RGB Output Relative Phase	ӨRBSTD	－	（Note A9）	92	96	100	。
	ӨGBSTD	－		236	240	244	
	日RBDVD	－		88	92	96	
	ӨGBDVD	－		240	244	248	
	ӨRBTSB	－		90	94	98	
	ӨGBTSB	－		235	239	243	
	ӨRBDTV	－		103	107	111	
	ӨGBDTV	－		239	243	247	
Color Difference EXT \rightarrow INT Crosstalk	XEIR	－	（Note A10）	－	－50	－45	dB
	XEIG	－		－	－50	－45	
	XEIB	－		－	－50	－45	
Color Difference INT \rightarrow EXT Crosstalk	XIER	－	（Note A11）	－	－50	－45	dB
	XIEG	－		－	－50	－45	
	XIEB	－		－	－50	－45	
Color y Characteristic	CY sp	－	（Note A12）	1.80	2.07	2.20	V

Y stage

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP．	MAX	UNIT
Sync Input～DL Output AC Gain	Gyoff	－	（Note Y1）	－0．30	－0．20	0.01	dB
	Gyon	－		－0．45	－0．35	0.01	
Sync Input～DL Output Frequency Gain	Gfyoff	－	（Note Y2）	－0．20	0.00	0.20	dB
	Gfyon			－3．00	－1．60	0.20	
Sync Input～DL Output Dynamic Range	VDoff	－	（Note Y3）	1.30	1.60	－	V_{p-p}
	VDon			1.30	1.60	－	
Sync Input～DL Output Transfer Characteristics	TYDL	－	（Note Y4）	300	350	410	ns

Text stage

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
AC Gain	GR	-	(Note T1)	3.2	3.80	4.55	Times
	GG	-		3.2	3.80	4.55	
	GB	-		3.2	3.80	4.55	
Frequency Characteristics	GfR	-	(Note T2)	-	-3.0	-6.0	dB
	GfG	-		-	-3.0	-6.0	
	GfB	-		-	-3.0	-6.0	
Unicolor Adjustment Characteristic	vuMAX	-	(Note T3)	0.59	0.74	0.88	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
	vuCNT	-		0.31	0.39	0.47	dB
	vuMIN	-		0.06	0.08	0.10	
	$\Delta \mathrm{vu}$	-		17	18.5	20	
Brightness Adjustment Characteristic	VbrMAX	-	(Note T4)	4.3	4.6	4.9	V
	VbrCNT	-		3.3	3.6	3.9	
	VbrMIN	-		2.3	2.6	2.9	
Brightness Control Sensitivity	Gbr	-	(Note T5)	14.2	16.3	18.7	mV
White Peak Slice Level	VWPS	-	(Note T6)	2.600	2.825	3.100	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Black Peak Slice Level	VBPSR	-	(Note T7)	1.95	2.15	2.35	V
	VBPSG	-					
	VBPSB	-					
DC Restoration	TDCR	-	(Note T8)	-	0.0	50	mV
	TDCG	-					
	TDCB	-					
RGB Output S / N	N13	-	(Note T9)	-	-50	-45	dB
	N14	-					
	N15	-					
RGB Output Emitter-Follower Drive Current	\#\#13	-	(Note T10)	1.1	1.5	1.9	mA
	\#\#14	-					
	\#15	-					
RGB Output Temperature Coefficient	$\Delta \mathrm{t} 13$	-	(Note T11)	-2.0	0.0	2.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
	$\Delta \mathrm{t} 14$	-					
	$\Delta \mathrm{t} 15$	-					
Half-Tone Characteristics	GHT	-	(Note T12)	0.45	0.5	0.55	Times
Half-Tone ON Voltage	VHT	-	(Note T13)	0.6	0.8	1.0	V
V-BLK Pulse Output Level	VVR	-	(Note T14)	0.5	1.0	1.5	V
	VVG	-					
	VVB	-					
H-BLK Pulse Output Level	VHR	-	(Note T15)	0.5	1.0	1.5	V
	VHG	-					
	VHB	-					
Blanking Pulse Delay Time	tdONR	-	(Note T16)	-	0.0	0.3	$\mu \mathrm{s}$
	tdONG	-					
	tdONB	-					
	tdOFFR	-		-	0.0	0.3	
	tdOFFG	-					
	tdOFFB	-					

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Sub-Contrast Control Range	$\Delta \mathrm{vsu}+$	-	(Note T17)	1.8	2.3	2.8	dB
	$\Delta \mathrm{vsu}-$	-		-3.0	-3.5	-4.0	
RGB Output Voltage	V\#13	-	(Note T18)	2.35	2.6	2.85	V
	V\#14	-					
	V\#15	-					
Cut-Off Voltage Control Range	CUT+R	-	(Note T19)	0.45	0.5	0.55	V
	CUT+G	-					
	CUT+B	-					
	CUT-R	-		-0.45	-0.5	-0.55	
	CUT-G	-					
	CUT-B	-					
Drive Adjustment Range	DRG+	-	(Note T20)	2.35	2.85	3.35	dB
	DRG-	-		-4.25	-5.0	-5.75	
	DRB+	-		2.35	2.85	3.35	
	DRB-	-		-4.25	-5.0	-5.75	
\#11 Input Impedance	Zin11	-	(Note T21)	24	30	36	k Ω
ACL Characteristic	ACL1	-	(Note T22)	-1.5	-3.5	-5.5	dB
	ACL2	-		-12	-15	-18	
ABL Point	ABLP1	-	(Note T23)	0.04	-0.01	-0.06	V
	ABLP2	-		-0.09	-0.14	-0.19	
	ABLP3	-		-0.24	-0.29	-0.34	
	ABLP4	-		-0.37	-0.42	-0.47	
ABL Gain	ABLG1	-	(Note T24)	-0.119	-0.095	-0.072	V
	ABLG2	-		-0.400	-0.320	-0.240	
	ABLG3	-		-0.750	-0.600	-0.450	
	ABLG4	-		-0.925	-0.740	-0.555	
BLK Off Mode	BLK	-	(Note T25)	-	Operating	-	-
Analog RGB Gain	GTXR	-	(Note T26)	4.2	5.0	6.0	Times
	GTXG	-					
	GTXB	-					
Analog RGB Frequency Characteristics	GfTXR	-	(Note T27)	-	-1.0	-3.0	dB
	GfTXG	-					
	GfTXB	-					
Analog RGB Input Dynamic Lange	GR13	-	(Note T28)	0.47	0.55	-	V_{p-p}
	GR14	-					
	GR15	-					
Analog RGB White Peak Slice Level	VTXMAXR	-	(Note T29)	3.5	3.8	4.1	V_{p-p}
	VTXMAXG	-					
	VTXMAXB	-					
Analog RGB Black Peak Limiter Level	VTXMINR	-	(Note T30)	1.9	2.1	2.3	V
	VTXMING	-					
	VTXMINB	-					

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
ACB Clamp Current	117a	-	(Note T44)	0.08	0.1	0.125	mA
	117b	-		0.08	0.1	0.125	
	117c	-		0.8	1.0	1.3	
	117d	-		2.0	2.5	3.2	
	118a	-		0.08	0.1	0.125	
	118b	-		0.08	0.1	0.125	
	118c	-		0.8	1.0	1.3	
	118d	-		2.0	2.5	3.2	
	119a	-		0.08	0.1	0.125	
	119b	-		0.08	0.1	0.125	
	119c	-		0.8	1.0	1.3	
	I19d	-		2.0	2.5	3.2	
IK Input Amplitude	IKR	-	(Note T45)	0.8	1.0	1.2	V_{p-p}
	IKG	-		0.8	1.0	1.2	
	IKB	-		0.8	1.0	1.2	
RGB γ Correction Characteristics	$\gamma 1 \mathrm{R}$	-	(Note T46)	40	50	60	(IRE)
	$\gamma 2 \mathrm{R}$	-		60	70	80	
	$\Delta 1 \mathrm{R}$	-		0.75	1.5	2.25	dB
	$\Delta 2 \mathrm{R}$	-		-0.75	0.0	0.75	
	$\Delta 3 \mathrm{R}$	-		-2.55	-3.3	-4.05	
	$\gamma 1 \mathrm{G}$	-		40	50	60	(IRE)
	$\gamma 2 \mathrm{G}$	-		60	70	80	
	$\Delta 1 \mathrm{G}$	-		0.75	1.5	2.25	dB
	$\Delta 2 \mathrm{G}$	-		-0.75	0.0	0.75	
	$\Delta 3 \mathrm{G}$	-		-2.55	-3.3	-4.05	
	$\gamma 1 \mathrm{~B}$	-		40	50	60	(IRE)
	$\gamma 2 \mathrm{~B}$	-		60	70	80	
	$\Delta 1 \mathrm{~B}$	-		0.75	1.5	2.25	dB
	$\Delta 2 \mathrm{~B}$	-		-0.75	0.0	0.75	
	$\Delta 3 \mathrm{~B}$	-		-2.55	-3.3	-4.05	
VK Output Characteristic	VKA	-	(Note T47)	1.90	2.00	2.10	V_{p-p}
	VK1	-		25.0	35.00	45.0	
	VK2	-		60.0	70.00	80.0	(IRE)
ACB Protector Circuit Operation Check 1	ACBPR	-	(Note T48)	-	-	-	-
	ACBPG	-		-	-	-	-
ACB Protector Circuit Operation Check 2	ACBBRAR	-	(Note T49)	-	-	-	-
	ACBBRAG	-		-	-	-	-
ACB Protector Circuit Operation Check 3	ACBBRLO	-	(Note T50)	-	-	-	-

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Base Band TINT Adjustment Characteristics	ANG RMIN	-	(Note T51)	47.0	53.0	59.0	。
	ANG BMIN	-		47.0	53.0	59.0	
	ANG RMAX	-		-51.0	-45.0	-39.0	
	ANG BMAX	-		-51.0	-45.0	-39.0	
Base Band TINT Adjustment Position	BUS BO	-	(Note T52)	C2	C6	CA	HEX

Deflection stage

CHARACTERISTIC	SYMBOL		TEST CONDITION	MIN	TYP.	MAX	UNIT
Sync. Separation Input Sensitivity Current	IIN38	-	(Note D1)	12	20	30	$\mu \mathrm{A}$
V Separation Filter Pin Source Current	IOUT39	-	(Note D2)	3.2	4.2	5.2	$\mu \mathrm{A}$
V Separation Level	$\mathrm{V}_{\text {SEP }}$	-	(Note D3)	5.0	5.5	6.0	V
H AFC Phase Detection Current Ratio	IDET	-	(Note D4)	210	300	420	$\mu \mathrm{A}$
	$\Delta \mathrm{I}_{\text {DET }}$	-		-5	0	+5	\%
Phase Detection Stop Period	TCO40	-	(Note D5)	-	$\begin{gathered} 262 \\ ? \\ 10 \end{gathered}$	-	(H)
32* f_{H} VCO Oscillation Start Voltage	$\mathrm{V}_{\mathrm{Vco}}$	-	(Note D6)	3.7	4.0	4.3	V
Horizontal Output Start Voltage	$\mathrm{V}_{\text {HON35 }}$	-	(Note D7)	4.7	5.0	5.3	V
	$V_{\text {BUS }}$ HON	-		-	1	-	-
	$V_{\text {BUS }}$ HOFF	-		-	0	-	
Horizontal Output Pulse Duty	$\mathrm{T}_{\mathrm{H} 35}$	-	(Note D8)	38.5	40.5	42.5	\%
Phase Detection Stop Mode	f_{FR}	-	(Note D9)	15585	15734	15885	Hz
Horizontal Output Free-Run Frequency	f_{HO}	-	(Note D10)	15585	15734	15885	Hz
Horizontal Oscillation Frequency Range	$\mathrm{f}_{\mathrm{HMIN}}$	-	(Note D11)	14700	15000	15300	Hz
	$\mathrm{f}_{\text {HMAX }}$	-		16500	16700	16900	
Horizontal Oscillation Control Sensitivity	β_{H}	-	(Note D12)	250	300	350	$\mathrm{Hz} / 0.1 \mathrm{~V}$
Horizontal Output Voltage	$\mathrm{V}_{\mathrm{H} 35}$	-	(Note D13)	4.2	4.6	5.0	V
	$V_{\text {L35 }}$	-		-	0.15	0.3	
Power Supply Voltage Dependence of Horizontal Oscillation Frequency	$\Delta \mathrm{f}_{\mathrm{HV}}$	-	(Note D14)	-20	0	+20	Hz / V
Temperature Dependence of Horizontal Oscillation Frequency	$\Delta \mathrm{f}_{\mathrm{HT}}$	-	(Note D15)	-	60	70	Hz
Horizontal Sync. Phase	SPH1	-	(Note D16)	2.3	2.5	2.7	$\mu \mathrm{s}$
	$\mathrm{S}_{\text {PH2 }}$	-		0.2	0.3	0.4	
Horizontal Picture Phase Adjustment Range	$\Delta \mathrm{H}_{\text {SFT }}$	-	(Note D17)	5.5	6.0	6.5	$\mu \mathrm{s}$
Horizontal Blanking Pulse Threshold	$V_{\text {HBLK1 }}$	-	(Note D18)	4.7	5.0	5.3	V
	$V_{\text {HBLK2 }}$	-		0.8	1.1	1.4	
Curve Correction Characteristic	$\Delta \mathrm{H}_{42}$	-	(Note D19)	2.3	2.5	2.7	$\mu \mathrm{s}$
H Cycle Black Peak Detection Disable Pulse	HBP_{5}	-	(Note D20)	7.5	8.0	8.5	$\mu \mathrm{s}$
	HBPW	-		13.0	13.5	14.0	
External Black Peak Detection Disable Pulse Threshold	$\mathrm{BP}_{\mathrm{V} 32}$	-	(Note D21)	0.9	1.1	1.3	V

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Clamp Pulse Start Phase	CP_{S}	-	(Note D22)	2.8	3.0	3.2	$\mu \mathrm{s}$
Clamp Pulse Width	CP_{W}	-	(Note D22)	5.6	5.8	6.0	$\mu \mathrm{s}$
HD Output Start Phase	HDS	-	(Note D23)	0.7	0.9	1.1	$\mu \mathrm{s}$
HD Output Pulse Width	HDW	-	(Note D23)	0.7	0.9	1.1	$\mu \mathrm{s}$
HD Output Amplitude	V_{HD}	-	(Note D23)	4.7	5.0	5.3	V
Gate Pulse Start Phase	GPs	-	(Note D24)	2.7	2.9	3.1	$\mu \mathrm{s}$
Gate Pulse Width	GPW	-	(Note D24)	1.8	2.0	2.2	$\mu \mathrm{s}$
Gate Pulse V Mask Period	TCO34	-	(Note D25)	-	$\begin{gathered} 261 \\ 1 \\ 10 \end{gathered}$	-	(H)
Sync. Out Low Level	V ${ }_{\text {SY }}$	-	(Note D26)	0.0	0.3	0.5	V
Vertical Output Oscillation Start Voltage	V_{ON}	-	(Note D27)	4.1	4.4	4.7	V
Vertical Free-Run Frequency	fvo	-	(Note D28)	-	53	-	Hz
Vertical Output Voltage	V_{VH}	-	(Note D29)	4.9	5.2	5.5	V
	V_{VL}	-		-	0	0.3	
Service Mode Switching	$\mathrm{VD}_{\mathrm{NO}}$	-	(Note D30)	3.1	3.4	3.7	V
Vertical Pull-In Range	f_{PL}	-	(Note D31)	-	225	-	(H)
	f_{PH}	-		-	297	-	
Vertical Frequency Forced 263H	$\mathrm{f}_{\mathrm{V} 1}$	-	(Note D32)	-	263	-	(H)
Vertical Frequency Forced 262.5H	$\mathrm{f}_{\mathrm{V} 2}$	-	(Note D32)	-	262.5	-	(H)
Vertical Blanking Off Mode	$\mathrm{V}_{\text {OFF }}$	-	(Note D33)	-	Check	-	-
Vertical Output Pulse Width	T_{D}	-	(Note D34)	44	46	48	$\mu \mathrm{s}$
	T_{W}	-		-	8	-	
RGB Output Vertical Blanking Pulse Start Phase	VR ${ }_{\text {S }}$	-	(Note D35)	44	46	48	$\mu \mathrm{s}$
	VGS1	-					
	VBS1	-					
RGB Output Vertical Blanking Pulse Stop Phase	$\mathrm{VR}_{\text {S2 }}$	-	(Note D35)	-	22	-	(H)
	$V \mathrm{~S}_{\text {S }}$	-		-	22	-	
	VB S2	-		-	22	-	
V Cycle Black Peak Detection Disable Pulse (Normal)	$\mathrm{VBP}_{\text {NORMAL }}$	-	(Note D36)	-	$\begin{gathered} 257 \\ 1 \\ 28 \end{gathered}$	-	(H)
V Cycle Black Peak Detection Disable Pulse (Zoom)	VBP ${ }_{\text {zoom }}$	-	(Note D37)	-	$\begin{gathered} 229 \\ l \\ 56 \end{gathered}$	-	(H)

Deflection correction stage

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Vertical Ramp Amplitude	$\mathrm{V}_{\mathrm{P} 27}$	-	(Note G1)	1.50	1.67	1.83	V_{p-p}
Vertical Amplification	GV	-	(Note G2)	22	25	28	dB
Vertical Amp Maximum Output Voltage	$\mathrm{V}_{\mathrm{H} 24}$	-	(Note G3)	2.5	3.0	3.5	V
Vertical Amp Minimum Output Voltage	$\mathrm{V}_{\mathrm{L} 24}$	-	(Note G4)	-	0.0	0.3	V
Vertical Amp Maximum Output Current	IMAX1	-	(Note G5)	11	14	17	mA
Vertical NF Sawtooth Wave Amplitude	$\mathrm{V}_{\mathrm{P} 25}$	-	(Note G6)	1.50	1.67	1.83	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Vertical Amplitude Range	V_{PH}	-	(Note G7)	± 36	± 40	± 44	\%
Vertical Linearity Correction Maximum Value	V_{ℓ}	-	(Note G8)	± 12	± 15	± 18	\%
Vertical S Correction Maximum Value	V_{S}	-	(Note G9)	20	25	30	\%
Vertical NF Center Voltage	V_{C}	-	(Note G10)	4.8	5.0	5.2	V
Vertical NF DC Change	$V_{D C}$	-	(Note G11)	± 100	± 120	± 140	mV
Vertical Amplitude EHT Correction	$\mathrm{V}_{\text {EHT }}$	-	(Note G12)	8	9	10	\%
E-W NF Maximum DC Value (Picture Width)	$\mathrm{V}_{\mathrm{H} 22}$	-	(Note G13)	5.3	5.8	6.3	V
E-W NF Minimum DC Value (Picture Width)	$\mathrm{V}_{\mathrm{L} 22}$	-	(Note G14)	1.75	1.90	2.05	V
E-W NF Parabola Maximum Value (Parabola)	$V_{P B}$	-	(Note G15)	2.1	2.5	2.9	V_{p-p}
E-W NF Corner Correction (Corner)	V_{CR}	-	(Note G16)	1.0	1.2	1.4	V_{p-p}
Parabola Symmetry Correction	$\mathrm{V}_{\text {TR }}$	-	(Note G17)	± 4.5	± 5.5	± 6.5	\%
E-W Amp Maximum Output Current	$\mathrm{I}_{\text {MAX2 }}$	-	(Note G18)	0.14	0.20	0.28	mA
AGC Operating Current 1	$V_{\text {AGC0 }}$	-	(Note G19)	470	590	710	$\mu \mathrm{A}$
AGC Operating Current 2	$\mathrm{V}_{\text {AGC1 }}$	-	(Note G20)	100	130	160	$\mu \mathrm{A}$
Vertical Guard Voltage	VVG	-	(Note G21)	1.80	2.00	2.20	V
E / W Output Self-Diagnosis	$V_{\text {BUS }}$ EW ${ }_{\text {OFF }}$	-	(Note G22)	-	0	-	-
	$V_{\text {BUS }}$ EWON	-		-	1	-	
V-Out Output Self-Diagnosis	$\mathrm{V}_{\text {Bus }} \mathrm{V}_{\text {OFF }}$	-	(Note G23)	-	0	-	-
	$\mathrm{V}_{\text {BUS }} \mathrm{V}_{\mathrm{ON}}$	-		-	1	-	
Vertical Blanking Check	$\mathrm{V}_{\text {BLK1 }} \mathrm{V}_{\text {BLK2 }}$	-	(Note G24)	-	Check	-	-
V Centering DAC Output	$\mathrm{V}_{21 \mathrm{~L}}$	-	(Note G25)	0.20	0.25	0.30	V
	$\mathrm{V}_{21 \mathrm{M}}$	-		2.20	2.30	2.35	
	$\mathrm{V}_{21 \mathrm{H}}$	-		4.20	4.30	4.35	
V NFB Pin Input Current	I_{20}	-	(Note G26)	-	10	900	nA

TEST CONDITIONS

Video stage

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{\text {CC }}=9 \mathrm{~V} / 5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)			
		SW MODE			MEASUREMENT METHOD
		SW 54	SW_{55}	SW56	
P_{6}	Y Input Pedestal Clamp Pulse Phase	B	B	OPEN	1) Set the bus control data to the preset value. 2) Set S_{54} to B (connect $V_{C C}(5 \mathrm{~V})$ to the Y input via a $20-\mathrm{k} \Omega$ resistor). 3) Measure \#54 and \#40 with an oscilloscope as shown in the diagram. Calculate TCL1 and TCL2.
P_{7}	Y Input Dynamic Range	C	B	OPEN	1) Set the bus control data to the preset value. 2) Set $S W_{54}$ to C (connect the Y input to AC-GND). 3) Set the unicolor to the center (100000), the brightness to the center (1000000), RGB cutoff to the center (10000000), the Y mute to OFF (0), and connect an external power supply to \#54. 4) Increase the supply voltage from V_{54} and measure \#13 (ROUT). 5) When the \#13 voltage stops changing, substitute the supply voltage (V) in the formula below and calculate $D R_{54}$. $D R_{54}=V-V_{54}$

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{NOTE} \& \multirow[b]{2}{*}{ITEM} \& \multicolumn{4}{|r|}{(TEST CONDITIONS $\mathrm{V}_{\text {CC }}=9 \mathrm{~V} / 5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)}

\hline \& \& \& W MOD \& \& MEASUREMENT METHOD

\hline P_{8} \& \#56 Output Impedance \& SW W_{54}

c \& SW 55 \& SW ${ }_{56}$ \& \begin{tabular}{l}

1) Set the bus control data to the preset value.

2) Set $S W_{54}$ to C (connect the Y input to AC-GND).

3) Connect the external power supply to \#56 via ammeter A as shown in the diagram below.

4) Adjust the power supply until the ammeter reads 0 amperes.

5) Measure the ammeter current 156 when the power supply is increased by 0.1 V .

6) Calculate $Z 56$ from the following formula.

$$
\mathrm{Z} 56=0.1[\mathrm{~V}] \div \mathrm{I} 56[\mathrm{~A}]
$$

\end{tabular}

\hline P_{9} \& Black Stretching Amplifier Maximum Gain \& A \& \& OPEN \& | 1) Set the bus control data to the preset value. |
| :--- |
| 2) Set the black stretch start point to 001 , turn the Y mute off (0), set $S W_{54}$ to A, and input a $500-\mathrm{kHz}$ sine wave to TP54A. |
| 3) Use \#54 to adjust the signal amplitude to $0.1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$. |
| 4) Set SW_{55} to B (minimum gain) and measure the amplitude V_{A} of $\# 56$. |
| 5) Set SW_{55} to A (maximum gain) and measure the amplitude V_{B} of $\# 56$. |
| 6) Calculate $G_{B S}$ from the following formula. $\mathrm{G}_{\mathrm{BS}}=\mathrm{V}_{\mathrm{B}} \div \mathrm{V}_{\mathrm{A}}$ |

\hline
\end{tabular}

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)			
			W MOD		MEASUREMENT METHOD
P_{14}	Self-Diagnosis Y-IN	SW_{54} C \downarrow A	SW ${ }_{\text {55 }}$	SW56	1) Set the bus control data to the preset value. 2) Set SW_{54} to C (connect the Y input to $A C-G N D$), connect \#54 to an external power supply (PS), and turn read mode on. 3) When the power supply is increased from V_{54} to $\mathrm{V}_{54}+0.7 \mathrm{~V}$, check that in read mode Y -IN changes from error to OK to error. SCDC 4) Next, set SW_{54} to A and input a sine wave from TG-7 to TP54. Apply a signal on \#54 as shown in the diagram. Check that there is no problem with the Y IN in read mode. SCAC
P_{15}	Y Mute	A	B	OPEN	1) Set the bus control data to the preset value. 2) Input a $100-\mathrm{kHz}$ sine wave to TP 54 and adjust $\# 54$ to $0.7 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$. 3) Turn the Y mute on (1) and measure the \#56 amplitude VYM1. 4) Turn the Y mute off (0) and measure the \#56 amplitude VYMO. 5) Calculate the following formula. $\mathrm{G}_{\mathrm{YM}}[\mathrm{dB}]=20 \times \log$ (VYM1 / VYM0)

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V} / 5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)			
		SW MODE			MEASUREMENT METHOD
		SW_{54}	SW_{55}	SW_{56}	MEASUREMENT METHOD
P_{19}	Between Y IN and R OUT Delay Time	A	B	OPEN	1) Set the bus control data to the preset value. 2) Set SW_{54} to A and input a $2 T$ pulse (STD) signal from TG-7 to TP54A. 3) Set the unicolor to the maximum (111111), the brightness to the center (1000000), the RGB cutoff to the center (10000000), turn the Y mute off (0), and set the picture sharpness to the center (100000). 4) Connect an emitter-follower to TP13 (R OUT) to observe TP13 (R OUT). 5) Calculate T_{Y} from the following diagram.

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control). Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Note 1: When testing, see the picture sharpness test circuit diagram. First turn ACB mode off (bus control).
Note 2: Ensure the composite signal is always input to pin 38 (SYNC IN).

Chroma stage

NOTE	ITEM	(\#16 $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \# 37 \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \# 51 \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)			
		SW MODE		MEASUREMENT METHOD	
		SW 45	SW_{46}		
C_{1}	ACC Characteristics	B	ON	1) 2) 3)	Input a rainbow signal (signal C-1) to the chroma input pin (TP45).Burst : chroma $=1: 1$ When the chroma input amplitude levels are set to $10,30,300$, and $600 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$, measure the output amplitudes va10, va30, va300, and va600 of the R-Y output pin (TP48). Calculate $\mathrm{A}=\mathrm{va} 30 / \mathrm{va} 600$.
C_{2}	Color Difference Output Level	B	ON	1)	Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma $=300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$: $300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ Change the burst phase so that bar 2 of the B-Y output pin (TP47) output waveform is the bottom peak and bar 7 is the top peak. Measure the amplitude (v_{B}) of the B-Y output pin (TP47). Set the burst phase to 180°. Measure the amplitude $\left(\mathrm{v}_{\mathrm{R}}\right)$ of the $\mathrm{R}-\mathrm{Y}$ output pin (TP48)
C_{3}	Color Difference Output Relative Amplitude	B	ON	1)	Calculate the relative amplitude v_{RB} from the following formula using the values obtained in steps 3) and 5) of C_{2} above. $v_{R B}=v_{R} / v_{B}$
C_{4}	Color Difference Output Demodulation Angle	B	ON		Input a rainbow signal (C-1) to the chroma input pin (TP45). Burst : chroma $=200 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$: $200 \mathrm{mV} \mathrm{p}_{\mathrm{p}} \mathrm{p}$ Calculate the demodulation angles $\theta \mathrm{B}_{\mathrm{cnt}}$ and $\theta \mathrm{R}_{\mathrm{cnt}}$ of the $\mathrm{B}-\mathrm{Y}$ output pin (TP47) and the $\mathrm{R}-\mathrm{Y}$ output pin (TP48) using the formulas and diagram below. $\theta_{\mathrm{Bcnt}}=0^{\circ}-\tan ^{-1}\left(\frac{1}{\frac{2 A}{B}+\sqrt{3}}\right)-15^{\circ}$ (Bar 6 is the peak at $B-Y$) $\theta_{\mathrm{Rcnt}}=90^{\circ}-\tan ^{-1}\left(\frac{1}{\frac{2 A}{B}+\sqrt{3}}\right)-15^{\circ}$ (Bar 3 is the peak at $\mathrm{R}-\mathrm{Y}$)
C_{5}	Color Difference Output Relative Phase	B	ON		Calculate the relative phase $\theta_{R B}$ from the following formula using the values obtained in C_{4} above. $\theta_{\mathrm{RB}}=\theta_{\mathrm{Rcnt}}-\theta_{\mathrm{Bcnt}}$

Note 1: Where the bus data are not specified, set the preset values.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

NOTE	ITEM	$\left(\# 16 \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \# 37 \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \# 51 \mathrm{~V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}\right)$			
		SW MODE		MEASUREMENT METHOD	
		SW_{45}	SW_{46}		
C_{6}	Color Difference Output Tint Adjustment Characteristics	B	ON		Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma $=300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$: $300 \mathrm{mV} \mathrm{p}_{\mathrm{p}}$ Measure the demodulation angles θ_{B}, and θ_{R}, in the outputs with the tint set to the maximum (subaddress (03 H), data (FE)). Calculate θ_{Bmax} and θ_{Rmax} by the following formulas. $\begin{aligned} & \theta_{\mathrm{Bmax}}=\theta_{\mathrm{B}}-\theta_{\mathrm{Bcnt}} \\ & \theta_{\mathrm{Rmax}}=\theta_{\mathrm{R}}-\theta_{\mathrm{Rcnt}} \end{aligned}$ Measure the demodulation angles $\theta_{\mathrm{B}^{\prime \prime}}$ and $\theta_{\mathrm{R}^{\prime \prime}}$ in the outputs with the tint set to the minimum (subaddress $(03 \mathrm{H})$, data (00). Calculate θ_{Bmin} and θ_{Rmin} by the following formulas $\theta_{\mathrm{Bmin}}=\theta_{\mathrm{B}}-\theta_{\mathrm{Bcnt}}$ $\theta_{\mathrm{Rmin}}=\theta_{\mathrm{R} "}-\theta_{\mathrm{Rcnt}}$
C_{7}	Supply Voltage Dependence of Color Difference Output	B	ON	2)	Input a rainbow signal (signal C-1) to the chroma input pin (TP45). Burst : chroma $=300 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$: $300 \mathrm{mV} \mathrm{m}_{\mathrm{p}}$ As in C_{2}, measure the amplitudes $\Delta \mathrm{VBp}$ and $\Delta \mathrm{VRp}$ of the $\mathrm{B}-\mathrm{Y}$ output pin (TP47) and $\mathrm{R}-\mathrm{Y}$ output pin (TP48) when the $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ is set to $5 \mathrm{~V}+0.3 \mathrm{~V}$. Calculate the amplitude ratios BV p and RVp when the $5-\mathrm{V}$ V_{C} is set to 5 V . $\mathrm{BVp}=\frac{\Delta \mathrm{VBp}-\mathrm{vB}}{\mathrm{vB}} \times 100 \quad \mathrm{RVp}=\frac{\Delta \mathrm{VRp}-\mathrm{vR}}{\mathrm{vR}} \times 100$ Using the same tests as above, calculate $B V n$ and $R V n$ when the $5-\mathrm{V} V C C$ is set to $5 \mathrm{~V}-0.3 \mathrm{~V}$ $\mathrm{BVn}=\frac{\Delta \mathrm{VBn}-\mathrm{vB}}{\mathrm{vB}} \times 100 \quad \mathrm{RVn}=\frac{\Delta \mathrm{VRn}-\mathrm{vR}}{\mathrm{vR}} \times 100$
C_{8}	Identification Sensitivity	B	ON		Input a rainbow signal (signal C-1) to the chroma input pin (TP45).Burst : chroma $=1$: 1 Gradually reduce the input signal amplitude from $100 \mathrm{mV} \mathrm{V}_{\text {pp }}$. When the $\mathrm{B}-\mathrm{Y}$ output pin (TP47) signal disappears (when the current is DC), measure the input signal amplitude v_{CB}. Gradually increase the input signal amplitude from $0 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$. When a demodulation signal appears on the B-Y output pin (TP47), measure the input signal amplitude $\mathrm{V}_{B C}$.
C9	Bus Read Identification	B	ON	1)	Perform the same tests as above while observing the bus read : When the input signal amplitude is v_{CB}, check that the first bit is set to 0 (bCB). When the input signal amplitude is v_{BC}, check that the first bit is set to 1 (bBC).

Note 1: Where the bus data are not specified, set the preset values.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

NOTE	ITEM	$\left(\# 16 \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \# 37 \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \# 51 \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}\right.$)			
		SW MODE		MEASUREMENT METHOD	
		SW 45	SW_{46}		
C_{10}	Color Difference Output Voltage Difference in 1H Period	B	ON	1) 2) 3)	Input no more than $300-\mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ as a burst signal to chroma input pin (TP45). Measure the DC voltage difference (vBH) between the H blanking period and picture period of the $\mathrm{B}-\mathrm{Y}$ output pin (TP47). Measure the DC voltage difference (vRH) between the H blanking period and picture period of the R-Y output pin (TP48).
C_{11}	Color Difference Output Voltage Difference Every 1H Period	B	ON	3)	Input no more than $300-\mathrm{m} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ as a burst signal to chroma input pin (TP45). Measure the DC voltage difference (vBG) between the H picture period and $H+1$ picture period of the B-Y output pin (TP47). Measure the DC voltage difference (vRG) between the H picture period and $H+1$ picture period of the R-Y output pin (TP48).
C_{12}	Color Difference Output DC Voltage	B	ON		Input no more than $300-\mathrm{mV} \mathrm{V}_{\text {p-p }}$ as a burst signal to chroma input pin (TP45). Measure the picture period DC voltage V_{B} of the $\mathrm{B}-\mathrm{Y}$ output pin (TP47). Measure the picture period DC voltage V_{R} of the $R-Y$ output pin (TP48).
C_{13}	Difference between DC Voltage Axes of Color Difference Output	B	ON	1)	Use the following formula to calculate the difference $\left(\mathrm{V}_{\mathrm{RB}}\right)$ between the voltage axes from the following formula using the values obtained in C_{12} above. $V_{R B}=V_{R}-V_{B}$
C_{14}	X'tal Free-Run Frequency	A	ON		No signal input to the chroma input pin (TP45) (set SW45 to A). Observe the CW output pin (TP50) and measure the output frequency X_{f}.

Note 1: Where the bus data are not specified, set the preset values.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Note 1: Where the bus data are not specified, set the preset values.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Color difference stage

NOTE	ITEM	(\#16 $\mathrm{V}_{C C}=9 \mathrm{~V}, \# 37 \mathrm{~V}$ CC $=9 \mathrm{~V}, \# 51 \mathrm{~V}_{C C}=5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)					
		SW MODE				MEASUREMENT METHOD	
		SW6	SW_{45}	SW 52	SW53		
A_{1}	Color Difference Input Clamp Voltage	C	A	A	A		Connect the color difference input pin to AC-GND. (Set SW 52 A and $\mathrm{SW}_{53 \mathrm{~A}}$ to A.) Measure the voltage V_{RY} of the $\mathrm{R}-\mathrm{Y}$ input pin (\#52) and the voltage V_{BY} of the $\mathrm{B}-\mathrm{Y}$ input pin (\#53).
A_{2}	Color Difference Input / Output Delay Time	C	A	B	B	3)	Set to external color difference input mode (subaddress (05H), data (81)). Now set as follows : Unicolor : maximum (subaddress (00H), data (3F)) Brightness : maximum (subaddress (01H), data (7F)) Color : center (subaddress (02H), data (40)). Set SW ${ }_{52 A}$ and $S W_{53 A}$ to B. Input signal $C-2$ to the $R-Y$ input pin (TP52) and the B-Y input pin (TP53) $\mathrm{f}_{0}=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{~V} \mathrm{p}$ p. Measure the signal delay time (DLRY) from the R-Y input pin (TP52) to the R output (TP13). Measure the signal delay time (DLBY) from the B-Y input pin (TP53) to the B output (TP15).
A_{3}	Unicolor Adjustment Characteristics	C	A	B	B	2) ${ }^{\text {2) }}$	Set to external color difference input mode (subaddress (05H), data (81)) Now set as follows : Brightness : maximum (subaddress (01H), data (7F)) Color \quad : center (subaddress (02H), data (40)) Relative phase amplitude : standard (subaddress (12H), data (00)). Set $S W_{52 A}$ and $S W_{53 A}$ to B. Input signal $C-2$ to the $R-Y$ input pin (TP52) and the B-Y input pin (TP53). $\mathrm{f}_{0}=100 \mathrm{kHz} \text {, picture period amplitude }=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} .$ Set unicolor to the maximum (subaddress (00 H), data (3F)). Measure the RUmax, the amplitude of the R output (TP13), and BUmax, the amplitude of B output (TP15). Set unicolor to the minimum (subaddress (00 H), data (00). Measure the RUmin, the amplitude of the R output (TP13), and BUmin, the amplitude of B output (TP15). Calculate the unicolor adjustment characteristics $u R$ and $u B$ by the following formulas. $u R=20 \log \frac{R U_{\min }}{R U_{\max }} \quad u B=20 \log \frac{B U_{\min }}{B U_{\max }}$

Note 1: Where the bus data are not specified, set the preset value. Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{NOTE} \& \multirow[b]{2}{*}{ITEM} \& \multicolumn{4}{|c|}{\multirow[b]{2}{*}{SW MODE}} \& \(\left(\# 16 \mathrm{~V}_{C C}=9 \mathrm{~V}, \# 37 \mathrm{~V} \mathrm{CC}=9 \mathrm{~V}, \# 51 \mathrm{~V} \mathrm{CC}=5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}\right)\) \\
\hline \& \& \& \& \& \& MEASUREMENT METHOD \\
\hline \(\mathrm{A}_{10}\) \& \begin{tabular}{l}
Color Difference \\
EXT \(\rightarrow\) INT \\
Crosstalk
\end{tabular} \& SW6

c \& SW45 \& SW 52

B \& SW ${ }_{\text {S3 }}$ \& \begin{tabular}{l}

1) No signal input to the chroma input pin (TP45) (set $S W_{45}$ to A).

2) Now set as follows :

Relative phase amplitude : standard (subaddress (12H), data (00)).

3) Set $S W_{52 A}$ and $S W_{53 A}$ to B. Input signal $C-2$ to the $R-Y$ input pin (TP52) and the $B-Y$ input pin (TP53). $\mathrm{f}_{0}=4 \mathrm{MHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$

4) Set to external color difference input mode (subaddress (05H), data (81)).

5) Adjust the color data so that the amplitude of the R output pin (TP13) is $2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$.

6) Set to internal color difference input mode (subaddress (05H), data (80)).

7) Measure the amplitude $v_{\text {XER }}$ of the R output pin (TP13) and calculate the amount of crosstalk.

$$
X E I R=20 \log \frac{v X E R}{2}
$$

8) Repeat steps 4) to 7) above for the G and B axes and calculate the amount of crosstalk on those axes.

$$
\text { XEIG }=20 \log \frac{v X E G}{2} \quad X E I B=20 \log \frac{v X E B}{2}
$$

\end{tabular}

\hline
\end{tabular}

Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Y stage

NOTE	ITEM	$\left(\# 16 \mathrm{~V}_{C C}=9 \mathrm{~V}, \# 37 \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \# 51 \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}\right)$	
		$\begin{gathered} \hline \text { SW MODE } \\ \hline \text { SW }_{45} \\ \hline \end{gathered}$	MEASUREMENT METHOD
Y_{1}	Sync Input~DL Output AC Gain	A	1) Input signal C-2 to the Sync Input pin (TP38). $\mathrm{f}_{0}=100 \mathrm{kHz} \text {, picture period amplitude }=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ 2) Turn DL mode off (subaddress (12), data (80)) and measure the picture period amplitude v_{43} off of the DL output (TP43). Calculate the gain from the input (GYoff) by the formula shown below. 3) Turn DL mode on (subaddress (12), data (AO)) and measure the picture period amplitude v_{43} on of the DL output (TP43). Calculate the gain from the input (GYon) by the formula shown below. $\text { GYoff }=20 \log \frac{\mathrm{v} 43 \text { off }}{0.2} \quad \text { GYon }=20 \log \frac{\mathrm{v} 430 \mathrm{on}}{0.2}$
Y_{2}	Sync Input~DL Output Frequency Gain	A	1) Input signal C-2 to the Sync Input pin (TP38). $\mathrm{f}_{0}=8 \mathrm{MHz} \text {, picture period amplitude }=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ 2) Turn DL mode off (subaddress (12), data (80)) and measure the picture period amplitude $\mathrm{v}_{438 \mathrm{Moff}}$ of the DL output (TP43). Calculate the gain from the input (GYoff) by the formula shown below. 3) Turn DL mode on (subaddress (12), data (A0)) and measure the picture period amplitude $\mathrm{v}_{438 \mathrm{Mon}}$ of the DL output (TP43). Calculate the gain from the input (GYon) by the formula shown below. $\text { GfYoff }=20 \log \frac{v_{438 M o f f ~}}{v_{430 f f}} \quad \text { GfYon }=20 \log \frac{v_{438 M o n}}{v_{43 o n}}$
Y_{3}	Sync Input~DL Output Dynamic Range	A	1) Input signal C-3 to the Sync Input pin (TP38). 2) When the amplitude A of signal C-3 is increased from 0 , observe the change in the picture period amplitude of the DL output (TP43). With DL mode turned on and off, when the output amplitude stops changing in a linear direction, measure the input signal amplitude A .
Y_{4}	Sync Input~DL Output Transfer Characteristics	A	1) Input signal C -2 to the Sync Input pin (TP38). $\mathrm{f}_{0}=100 \mathrm{kHz} \text {, picture period amplitude }=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ 2) Turn DL mode on (subaddress (12H), data (20)) and measure the amount of delay TYLD from the Sync Input (\#38) to the DL output (TP43).

Note 1: Where the bus data are not specified, set the preset value.
Note 2: Ensure the sync signal is always input to TP38 (SYNC IN).

Text stage

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE \& SUB ADDRESS \& DATA									MEASUREMENT METHOD	
		S_{03}	S_{04}	S_{05}	S_{06}	S_{07}	S_{08}	S_{09}	S_{10}	S_{54}		
T 1	AC Gain	A	A	A	OFF	A	A	A	OFF	A		Input signal 1 ($f=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 54 . Measure the picture period amplitudes of pins 13,14 , and $15 .\left(v_{13}, v_{14}\right.$, v_{15}) $\begin{aligned} & \mathrm{G}_{\mathrm{R}}=\mathrm{v}_{13} / 0.2 \\ & \mathrm{G}_{\mathrm{G}}=\mathrm{v}_{14} / 0.2 \\ & \mathrm{G}_{\mathrm{B}}=\mathrm{v}_{15} / 0.2 \end{aligned}$
T_{2}	Frequency Characteristics	A	A	A	OFF	A	A	A	OFF	A		Input signal 1 ($\mathrm{f}=8 \mathrm{MHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 54 . Measure the picture period amplitudes of pins 13, 14, and 15. (v_{13} $8 \mathrm{MHz}, \mathrm{v}_{14} 8 \mathrm{MHz}$, and $\mathrm{v}_{15} 8 \mathrm{MHz}$). Using the values obtained in T_{01} above, calculate the frequency characteristics from the following formulas. $\begin{aligned} & \mathrm{G}_{\mathrm{fR}}=20 \times \log \left(\mathrm{v}_{13} 8 \mathrm{MHz} / \mathrm{v}_{13}\right) \\ & \mathrm{G}_{\mathrm{fG}}=20 \times \log \left(\mathrm{v}_{14} 8 \mathrm{MHz} / \mathrm{v}_{14}\right) \\ & \mathrm{G}_{\mathrm{fB}}=20 \times \log \left(\mathrm{v}_{15} 8 \mathrm{MHz} / \mathrm{v}_{15}\right) \end{aligned}$
T3	Unicolor Adjustment Characteristics	A	A	A	OFF	A	A	A	OFF	A		Input signal 1 ($f=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 54 . When the subaddress (00 , unicolor) data are changed to the maximum $(3 F)$, the center (20), and the minimum (00), measure the picture period amplitude of pin 13. $\left(v_{u}{ }^{\text {MAX }}, v_{u}{ }^{\text {CNT }}, v_{u}{ }^{\text {MIN }}\right)$ Calculate the maximum, minimum amplitude ratio for unicolor in decibels. $\left(\Delta v_{u}\right)$
T4	Brightness Adjustment Characteristics	A	A	A	OFF	A	A	A	OFF	A		Input signal 2 to pin 54 and adjust the picture period amplitude input of pin 13 to $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p} \text {. }}$ When the subaddress (01, brightness) data are changed to the maximum (FF), the center (C0), and the minimum (80), measure the picture period DC voltage of pin 13. $\left(\mathrm{Vbr}^{\mathrm{MAX}}, \mathrm{Vbr}^{\mathrm{CNT}}, \mathrm{Vbr}^{\mathrm{MIN}}\right)$
T_{5}	Brightness Control Sensitivity	A	A	A	OFF	A	A	A	OFF	A		Using the values obtained in T_{4} above, calculate the brightness sensitivity from the following formula. $\mathrm{Gbr}=\left(\mathrm{Vbr}{ }^{\mathrm{MAX}}-\mathrm{Vbr}^{\mathrm{MIN}}\right) / 128$

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE \& SUB ADDRESS \& DATA									MEASUREMENT METHOD	
		S_{03}	S04	S_{05}	S_{06}	S_{07}	S_{08}	S_{09}	S_{10}	S_{54}		
T6	White Peak Slice Level	A	A	A	OFF	A	A	A	OFF	A		Change the bus data and set the sub-contrast to the maximum. Input signal 2 to pin 54 and gradually increase the amplitude. When pin 13's picture period is clipped, measure the picture period amplitude of pin 13
T_{7}	Black Peak Slice Level	A	A	A	OFF	A	A	A	OFF	C	2)	Apply an external power supply to pin 54 and gradually decrease the voltage from 3.7 V . When their picture periods are clipped, measure the picture period amplitudes of pins 13,14 , and 15.
T_{8}	DC Restoration	A	A	A	OFF	A	A	A	OFF	A	4)	Input the TG7 stair-step signal to pin 54. Adjust the unicolor data so that the pin 13 stair-step output signal is 1.25 V_{p-p}. When the stair-step signal APL is changed from 10% to 90%, measure the voltage change at point A in the diagram below. Repeat steps 1) to 3) above on pins 14 and 15.

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE \& SUB ADDRESS \& DATA									MEASUREMENT METHOD	
		S_{03}	S_{04}	S_{05}	S_{06}	S_{07}	S_{08}	S_{09}	S_{10}	S_{54}		
												Measure the picture period noise levels of pins 13, 14, and 15 with an oscilloscope. $\left(n_{13}, n_{14}, n_{15}\left(V_{p-p}\right)\right)$
T9	RGB Output S / N	A	A	A	OFF	A	A	A	OFF	C		Calculate the S / N for each pin. $\begin{aligned} & N_{13}=-20 \times \log \left(2.5 /\left(0.2 \times n_{13}\right)\right) \\ & N_{14}=-20 \times \log \left(2.5 /\left(0.2 \times n_{14}\right)\right) \\ & N_{15}=-20 \times \log \left(2.5 /\left(0.2 \times n_{15}\right)\right) \end{aligned}$
T_{10}	RGB Output Emitter-Follower Drive Current	A	A	A	OFF	A	A	A	OFF	C		Connect a $3.5-\mathrm{V}$ external power supply to pin 13 via a $100-\Omega$ resistor (I\#13) and measure the sink current on pin 13. Perform the same test on pins 14 and 15. (\#14, I\#15)
T_{11}	RGB Output Temperature Coefficient	A	A	A	OFF	A	A	A	OFF	C		When the temperature changes through the range $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ measure the changes in the picture period amplitudes of pins 13,14 , and 15. Calculate the voltage changes per degree of temperature. $(\Delta t 13, \Delta t 14$, $\Delta t 15)$
T_{12}	Half-Tone Characteristics	A	A	A	OFF	A	A	A	OFF	A		Input signal 1 ($\mathrm{f}=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 54 . Measure the picture period amplitude of pin 13. ($\mathrm{v}_{13 \mathrm{~A}}$) Apply 1.5 V DC to pin 6. Measure the picture period amplitude of pin 13. ($\mathrm{v}_{13 \mathrm{~B}}$) $\mathrm{G}_{\mathrm{HT}}=\mathrm{v}_{13 \mathrm{~B}} / \mathrm{v}_{13 \mathrm{~A}}$
T_{13}	Half-Tone ON Voltage	A	A	A	OFF	A	A	A	OFF	A		Input signal $1\left(\mathrm{f}=100 \mathrm{kHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right)$ to pin 54 . Connect an external power supply to pin 6 and gradually increase the voltage from 0 V . When the picture period amplitude of pin 13 changes, measure the pin 3 voltage. (V_{HT})
T_{14}	V-BLK Pulse Output Level	A	A	A	OFF	A	A	A	OFF	C		Measure the voltages of pins 13,14 , and 15 during the vertical blanking period. ($\mathrm{V}_{\mathrm{VR}}, \mathrm{V}_{\mathrm{VG}}, \mathrm{V}_{\mathrm{VB}}$)
T_{15}	H-BLK Pulse Output Level	A	A	A	OFF	A	A	A	OFF	C		Measure the voltages of pins 13,14 , and 15 during the horizontal blanking period. $\left(\mathrm{V}_{\mathrm{HR}}, \mathrm{~V}_{\mathrm{HG}}, \mathrm{~V}_{\mathrm{HB}}\right)$

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE \& SUB ADDRESS \& DATA									MEASUREMENT METHOD	
		S_{03}	S_{04}	S_{05}	S_{06}	S_{07}	S_{08}	S_{09}	S_{10}	S_{54}		
T_{29}	Analog RGB White Peak Slice Level	B	B	B	ON	A	A	A	OFF	C		Input signal 2 to pin 3 . Gradually increase the picture period amplitude A. When pin 13 is clipped, measure the picture period amplitude of pin 13. As in steps 1) and 2) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15.
T_{30}	Analog RGB Black Peak Limiter Level	A	A	A	ON	A	A	A	OFF	C		Apply an external power supply to pin 3. Gradually decrease the voltage from 5V DC. When pin 13 is clipped, measure the voltage of pin 13. As in step 1) above, apply to pin 4 and measure pin 14, then apply to pin 5 and measure pin 15.
T_{31}	Analog RGB Contrast Adjustment Characteristics	B	B	B	ON	A	A	A	OFF	C		Input signal 1 ($\mathrm{f}=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 3. When the subaddress (00 , unicolor) data are changed to the maximum $(3 F)$, the center (20), and the minimum (00), measure the picture period amplitude of pin 13. (vuTXR1, vuTXR2, vuTXR3) Calculate the maximum and minimum amplitude ratios in decibels. As in steps 1), 2) and 3) above, input signal 1 to pin 4 and measure pin 14, then input signal 1 to pin 5 and measure pin 15.
T_{32}	Analog RGB Brightness Adjustment Characteristics	B	B	B	ON	A	A	A	OFF	C		Input signal 2 to pins 3,4 , and 5 . Adjust the signal 2 amplitude A so that the picture period amplitude of pin 13 is $0.5 \mathrm{~V}_{\mathrm{p} \text {-p}}$. When the subaddress (05, RGB brightness) data are changed to the maximum (F8), the center (88), and the minimum (08), measure the picture period amplitudes of pins 13,14 , and 15. ($\mathrm{vbr}_{\mathrm{TX} 1}$, $\mathrm{vbr}_{\mathrm{TX} 2}$, $\mathrm{vbr}_{\mathrm{TX}}$)

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE \& SUB ADDRESS \& DATA									MEASUREMENT METHOD	
		S_{03}	S_{04}	S_{05}	S_{06}	S_{07}	S_{08}	S_{09}	S_{10}	S_{54}		
T33	Analog RGB Mode On Voltage	B	A	A	OFF	A	A	A	OFF	C		Input signal 1 ($\mathrm{f}=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 3. Apply an external power supply to pin 6 . Gradually increase the voltage from 0 V . When signal 1 is output to pin 13 , measure the voltage of pin 6.
T_{34}	Analog RGB Mode Transfer Characteristics	A	A	A	OFF	A	A	A	OFF	C		Set the subaddress (05 , RGB brightness) data to the maximum (F8). Input signal 3 (signal amplitude $4.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 6. Measure the switching transfer characteristics of pins 13, 14, and 15 according to diagram T-2. Using the data obtained from the above measurements, calculate the maximum axis difference between the rising and falling edges of transfer delay time.
T_{35}	Crosstalk from Video to Analog RGB	A	A	A	OFF or ON	A	A	A	OFF	A		Input signal 1 ($f=4 \mathrm{MHz}$, picture period amplitude $=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 54 . Adjust the input amplitude so that the picture period amplitude of pin 13 is $2 V_{p-p}$. Turn SW_{6} on. Measure the picture period amplitude $\left(V_{p-p}\right)$ of pin 13. $\left(v_{13 A}\right)$ Calculate by the following formula the amount of crosstalk from the video to the analog RGB. $\mathrm{V} v \rightarrow \mathrm{AR}=-20 \times \log \left(\mathrm{v}_{13 \mathrm{~A}} / 2\right)$ Repeat steps 4) and 5) above on pins 14 and 15.

NOTE	ITEM	(TEST CONDITIONS $\mathrm{VCC}=5 \mathrm{~V}$ and $9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE \& SUB ADDRESS \& DATA									MEASUREMENT METHOD	
		S_{03}	S_{04}	S_{05}	S_{06}	S_{07}	S_{08}	S_{09}	S_{10}	S_{54}		
T_{36}	Crosstalk from Analog RGB to Video	B	B	B	ON or OFF	A	A	A	OFF	C		Turn SW_{6} on. Input signal $1\left(f=4 \mathrm{MHz}\right.$, picture period amplitude $=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 3. Adjust the input amplitude so that the picture period amplitude of pin 13 is $2 \mathrm{~V}_{\mathrm{p} \text {-p }}$. Turn SW_{6} off. Measure the picture period amplitude $\left(V_{p-p}\right)$ of pin 13. ($\mathrm{v}_{13 \mathrm{~B}}$) Calculate by the following formula the amount of crosstalk from the analog RGB to the video. $\mathrm{vA} \rightarrow A R=-20 \times \log \left(\mathrm{v}_{13 \mathrm{~B}} / 2\right)$ As in steps 2) to 6) above, input to pin 4 and measure pin 14, then input to pin 5 and measure pin 15
T_{37}	Analog OSD Gain	A	A	A	OFF	B	B	B	ON	C		Input signal 1 ($\mathrm{f}=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 7. Measure the picture period amplitude of pin 13. ($\mathrm{v}_{13 \mathrm{R}}$) As in steps 1) and 2) above, input to pin 8 and measure pin 14, then input to pin 9 and measure pin 15. $\left(\mathrm{v}_{14 \mathrm{G}}, \mathrm{v}_{15 \mathrm{~B}}\right)$ $\begin{aligned} \mathrm{G}_{\text {OSDR }} & =v_{13 R} / 0.2 \\ \mathrm{G}_{\text {OSDG }} & =v_{14 \mathrm{G}} / 0.2 \\ \mathrm{G}_{\text {OSDB }} & =v_{15 B} / 0.2 \end{aligned}$
T_{38}	Analog OSD Frequency Characteristics	A	A	A	OFF	B	B	B	ON	C		Input signal $1\left(f=8 \mathrm{MHz}\right.$, picture period amplitude $\left.=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right)$ to pin 7 . Measure the picture period amplitude of pin 13. ($\left.v_{13 R} 8 \mathrm{MHz}\right)$ As in steps 1) and 2) above, input to pin 8 and measure pin 14, then input to pin 9 and pin 15. ($\mathrm{v}_{14 \mathrm{G}} 8 \mathrm{MHz}, \mathrm{v}_{15 \mathrm{~B}} 8 \mathrm{MHz}$) Calculate the frequency characteristics from the above results and the results in T_{37}. $\begin{aligned} & \mathrm{Gf}_{\mathrm{OSDR}}=20 \times \log \left(\mathrm{v}_{13 \mathrm{R}} 8 \mathrm{MHz} / \mathrm{v}_{13 \mathrm{R}}\right) \\ & \text { GfosDG }=20 \times \log \left(\mathrm{v}_{14 \mathrm{G}} 8 \mathrm{MHz} / \mathrm{v}_{14 \mathrm{G}}\right) \\ & \text { GfosDB }=20 \times \log \left(\mathrm{v}_{15 \mathrm{~B}} 8 \mathrm{MHz} / \mathrm{v}_{15 \mathrm{~B}}\right) \end{aligned}$

NOTE	ITEM	(TEST CONDITIONS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and 9 V , $\mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE \& SUB ADDRESS \& DATA									MEASUREMENT METHOD	
		S_{03}	S_{04}	S_{05}	S_{06}	S_{07}	S_{08}	S_{09}	S_{10}	S_{54}		
T_{39}	Analog OSD Output Level	A	A	A	OFF	A	A	A	OFF	C		When 0 V (DC) is input from an external power supply to pin 7 , when 7.5 V is input to pin 7, and when no external voltage is applied to pin 7, measure the picture period amplitude of pin 13. (VOSD1R, $\mathrm{V}_{\text {OSD2R, }}$, $\mathrm{V}_{\text {OSD3R }}$) As in step 1) above, input to pin 8 and measure pin 14, then input to pin 9 and measure pin 15. (VOSD1G, VOSD2G, VOSD3G) (VOSD1B, $\left.\mathrm{V}_{\text {OSD2B, }}, \mathrm{V}_{\text {OSD3B }}\right)$
T40	Analog OSD Mode On Voltage	A	A	A	OFF	B	A	A	OFF	C		Input signal 1 ($\mathrm{f}=100 \mathrm{kHz}$, picture period amplitude $=0.2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 7 . Apply an external power supply to pin 10. Gradually increase the voltage from 0 V . When signal 1 is output to pin 13 , measure the pin 10 voltage.
T_{41}	Analog OSD Mode Transfer Characteristics	A	A	A	OFF	A	A	A	OFF	C		Apply 2.5 V from an external power supply to pins 7,8 , and 9. Input signal 4 (signal amplitude $=4.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) to pin 10. Measure the switching transfer characteristics of pins 13, 14, and 15 according to diagram T-2. Using the data obtained from the above measurements, calculate the maximum axis difference between the rising and falling edge of the transfer delay time.
T42	RGB Output Self-Diagnosis	A	A	A	OFF	A	A	A	OFF	A		Set the bus control data to read mode and reset. Set to read mode again. Check that the read mode parameter (RGB-OUT) is 0 (error). Measure the voltage of pin 54 and apply that voltage +0.7 V to pin 53 using an external power supply. Set to read mode again. Check that the read mode parameter (RGB-OUT) is 1 (OK).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{NOTE} \& \multirow[t]{2}{*}{ITEM} \& \multirow[t]{2}{*}{SYMBOL} \& \multicolumn{9}{|c|}{SW MODE \& SUB ADDRESS \& DATA} \& \multicolumn{2}{|r|}{(TEST CONDITIONS \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}\))} \\
\hline \& \& \& \(\mathrm{S}_{03}\) \& S04 \& \(\mathrm{S}_{05}\) \& \(\mathrm{S}_{06}\) \& \(\mathrm{S}_{07}\) \& \(\mathrm{S}_{08}\) \& \(\mathrm{S}_{09}\) \& \(\mathrm{S}_{10}\) \& \(\mathrm{S}_{54}\) \& \multicolumn{2}{|r|}{MEASUREMENT METHOD} \\
\hline T48 \& ACB Protection Circuit Operating monitor 1 \& ACBPR ACBPG \& A \& A \& A \& OFF \& A \& A \& A \& OFF \& C \& \& \begin{tabular}{l}
Set the subaddress (11) data to (A0). \\
Apply 8.0 V to pin 17. \\
Monitor pin 13 and confirm that the picture period has not dropped to the BLK level (ACBPR). \\
Monitor pin 14 and confirm that the picture period has not dropped to the BLK level (ACBPG)
\end{tabular} \\
\hline T49 \& ACB Protection Circuit Operating monitor 2 \& \begin{tabular}{l}
ACBBRAR \\
ACBBRAG
\end{tabular} \& A \& A \& A \& OFF \& A \& A \& A \& OFF \& C \& \& \begin{tabular}{l}
Set the subaddress (11) data to (C0). \\
Apply 8.0 V to pin 17. \\
Monitor pin 13 and confirm that the picture period is at the BLK level (ACBBRAR). \\
Monitor pin 14 and confirm that the picture period is at the BLK level (ACBBRAG)
\end{tabular} \\
\hline \(\mathrm{T}_{50}\) \& ACB Protection Circuit Operating monitor 3 \& ACBBRLO \& A \& A \& A \& OFF \& A \& A \& A \& OFF \& C \& \& \begin{tabular}{l}
Set the subaddress (11) data to (C0). \\
Apply 6.8 V to \(9 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}(\mathrm{pin} 16)\). \\
Apply 6.8 V to pin 17. \\
Monitor pin 13 and confirm that the picture period has not dropped to the BLK level \\
(ACBBRLO)
\end{tabular} \\
\hline \(\mathrm{T}_{51}\) \& Base BandTint Adjustment Characteristics \& \begin{tabular}{l}
ANG RMIN \\
ANG BMIN \\
ANG RMAX \\
ANG BMAX
\end{tabular} \& A \& A \& A \& \begin{tabular}{c}
S52 \\
\hline
\end{tabular} \& S53

ON \& \begin{tabular}{|c}
-

ON

 \& - \& OFF \& C \& \&

Change subaddress (05) H to (81) H .

Set unicolor $=\max ;$ bright $=\max ;$ color $=$ center.

Input signal 1 ($f_{0}=100 \mathrm{kHz}, 100 \mathrm{mV} \mathrm{p}_{\mathrm{p}}$) to pin 53.

To pin 52, input a signal with the same amplitude but $90^{\circ} \mathrm{C}$ phase advanced compared to the signal input to pin 53.

When subaddress (14) H is changed to (C0) $\mathrm{H} \rightarrow(80) \mathrm{H}$, measure the amount of change in the output phase of pin 13. (ANG RMIN)

Under the same conditions as 5) above, measure the amount of change in the output phase of pin 15. (ANG BMIN)

When subaddress (14) H is changed to (C0) $\mathrm{H} \rightarrow$ (FF), measure the amount of change in the output phase of pin 13. (ANG RMAX)

Under the same conditions as 7) above, measure the amount of change in the output phase of pin 15. (ANG BMAX)
\end{tabular}

\hline
\end{tabular}

Deflection stage

NOTE	ITEM	TEST CONDITIONS (DEF $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)			
		SW MODE		MEASUREMENT METHOD	
		SW_{34}	SW_{38}		
D_{1}	Sync separation Input Sensitivity Current	OFF	B	(Sync in)	When the number of H periods in the \#33 (VD out) waveform changes from 297 to 225 , increase the voltage from 3 V and measure the value at (A) in the diagram.
D_{2}	V separation Filter Pin Source Current	OFF	B		When the subaddress ($O D$) D_{1} is set to (1), measure the value at ${ }^{(A)}$ in the diagram.
D_{3}	V Separation Level	OFF	B		When \#38 (Sync in) is connected to GND, measure the \#39 (VSEP FILTER) voltage.
D_{4}	H AFC Phase Detection Curren H AFC Phase Detection Current Ratio	OFF	A		Set the voltage to around 7.5 V , equivalent to when \#40 (AFC1 FILTER) has no load. When a signal as shown in the diagram below is input to \#38 (Sync in) from TG7, calculate V_{1} and V_{2} using the \#40 waveform. $\begin{aligned} & \mathrm{I}_{\mathrm{DET}}=\mathrm{V}_{1} \div 1 \mathrm{k} \Omega(\mu \mathrm{~A}) \\ & \Delta \mathrm{I}_{\mathrm{DET}}=\left(\mathrm{V}_{1} / \mathrm{V}_{2}-1\right) \times 100(\%) \end{aligned}$
D_{5}	Phase Detection Stop Period	OFF	A	Input a composite video si	nal to \#38 and measure the V mask period of the \#40 (AFC1 FILTER) waveform.

Note D5 : Phase detection stop period

Field $1 \xrightarrow{\longrightarrow}$ Field 2

NOTE	ITEM	TEST CONDITIONS (DEF $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$, BUS DATA $=$ POWER-ON RESET)		
		SW	ODE	MEASUREMENT METHOD
		SW_{34}	SW_{38}	
D_{6}	$32^{*} f_{H}$ VCO Oscillation Start Voltage	OFF	B	Increase the voltage from 2.5 V . When an oscillation waveform appears on TP41, measure the voltage. At the same time, check that no waveform is output ($0 V \mathrm{DC}$) to \#35 (H out). (Apply only DEF V_{CC}.) ($32 \mathrm{f}_{\mathrm{h}} \mathrm{VCO}$) Probe observation
D_{7}	Horizontal Output Start Voltage	OFF	B	Increase the voltage. When a horizontal pulse appears on \#35 (H out), measure the voltage. Note that the horizontal oscillation frequency at this time is near $\mathrm{f}_{\mathrm{HO}}(15.7 \mathrm{kHz} \pm 1 \mathrm{kHz})$. (Apply only DEF V_{Cc}.) 1) Under the above conditions, when no horizontal pulse is output on \#35, read D_{4} in bus read mode. (Apply also the chroma V_{CC}.) ($\mathrm{V}_{\mathrm{BUS}}$ HOFF) 2) Under the above conditions, when a horizontal pulse is output on \#35, read D_{4} in bus read mode. (Apply also the chroma V_{CC}.) ($\mathrm{V}_{\mathrm{BUS}} \mathrm{HON}$)
D_{8}	Horizontal Output Pulse Duty	OFF	B	
D9	Phase Detection Stop Mode	OFF	B	Input a composite video signal to TP38. When the subaddress (0D) D_{1} is set to (1), measure the oscillation frequency of the \#35 (H out) waveform.
D_{10}	Horizontal Free-Run Frequency	OFF	B	Measure the oscillation frequency of \#35 (H out).
D_{11}	Horizontal Oscillation Frequency Range	OFF	B	1) When \#40 (AFC1 FILTER) is connected to DEF $V_{C C}$ via a $10-\mathrm{k} \Omega$ resistor, measure the \#35 (H out) oscillation frequency. ($V_{\text {HMIN }}$) 2) When \#40 (AFC1 FILTER) is connected to GND via a $68-\mathrm{k} \Omega$ resistor, measure the \#35 (H out) oscillation frequency. (VmMAX)
D_{12}	Horizontal Oscillation Control Sensitivity	OFF	B	When the voltage on \#40 (AFC1 FILTER) is varied by $\pm 0.05 \mathrm{~V}$ with a horizontal oscillation frequency of 15.734 kHz , calculate the \#35 (H out) frequency variation rate.

NOTE	ITEM	TEST CONDITIONS (DEF $\mathrm{VCC}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)			
		SW MODE		MEASUREMENT METHOD	
		SW_{34}	SW_{38}		
D_{13}	Horizontal Output Voltage	OFF	B	1) Measure the high-level voltage of \#35 (H out) (when \#35 is connected to GND via a $481-\Omega$ resistor). ($\mathrm{V}_{\mathrm{H} 35}$) 2) Measure the low-level voltage of \#35 (H out) (when \#35 is connected to GND via a 481- Ω resistor). (VL35)	
D_{14}	Supply Voltage Dependence of Horizontal Oscillation Frequency	OFF	B	When the \#37 (DEF V_{CC}) voltage is varied from 8.5 V to 9.5 V , measure the variation in the \#35 (H out) oscillation frequency.	
D_{15}	Temperature Dependence of Horizontal Oscillation Frequency	OFF	B	When the temperature is varied through the range $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, measure the variation in the \#35 (H out) oscillation frequency.	
D_{16}	Horizontal Sync Phase	OFF	A		When a signal as shown at left is input to TP38 from TG7, measure the phase difference of the \#34 (FBP in) waveform in relation to the \#40 (AFC1 FILTER) waveform (SPH1). Also measure the phase difference of the \#40 waveform in relation to the center of the input horizontal sync signal ($\mathrm{SPH} 2^{2}$).
D17	Horizontal Picture Phase Adjustment Range	OFF	A	\#40 waveform $\left.\begin{array}{l} \text { At (00000) } \\ \begin{array}{l} \text { \#34 input } \\ \text { signal } \\ \text { (FBP in) } \end{array} \\ \text { At (11111) } \end{array}\right]$	Under the above conditions, when the subaddress (OB) D_{7} to D_{3} are varied from (00000) to (11111), measure the phase variation in the \#34 (FBP in) waveform.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{NOTE} \& \multirow[b]{2}{*}{ITEM} \& \multicolumn{3}{|r|}{TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)}

\hline \& \& \& ODE \& MEASUREMENT METHOD

\hline D_{18} \& Horizontal Blanking Pulse Threshold \& SW 34

ON \& SW ${ }_{38}$

A \& | Decrease the amplitude of \#34 (FBP in) from $9 \mathrm{~V}_{\mathrm{p} \text {-p. }}$. When AFC2 stops locking, measure the amplitude. (VhblK1) |
| :--- |
| Increase the amplitude of \#34 (FBP in) from 0 Vp-p. When horizontal blanking is applied to \#13 (R in), measure the amplitude. (VHBLK2) |

\hline D_{19} \& Curve Correction Range \& OFF \& A \& Input a signal as shown below to TP38 from TG7. When the voltage is varied from 3 V to 6 V , measure the phase variation in the \#34 (FBP in) waveform.

\hline D_{20} \& H Cycle Black Peak Detection Disable Pulse \& OFF \& A \& | Set the subaddress (01) D_{7} to (0), set the subaddress (05) $D_{3} \sim D_{1}$ to (010), and set the subaddress (0C) D_{0} to (1). |
| :--- |
| When a signal as shown at left is input to TP38 from TG7, measure the \#32 (HD out) waveform phase difference HBPs and pulse width HBPW in relation to the \#40 (AFC1 FILTER) waveform. |

\hline D_{21} \& Threshold of External Black Peak Detection Disable Pulse \& OFF \& A \& | Set the subaddress (02) D_{7} to (1). |
| :--- |
| Increase the voltage from 0 V . When \#52 reaches 3.4 VDC , measure the voltage. |

\hline
\end{tabular}

NOTE	ITEM	TEST CONDITIONS (DEF $\mathrm{VCC}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)			
		SW MODE		MEASUREMENT METHOD	
		SW_{34}	SW_{38}		
D_{22}	Clamp Pulse Start Phase Clamp Pulse Width	OFF	A		ubaddress (05) $D_{3} \sim D_{1}$ to (001), and set the subaddress (0C) D_{0} to Input a signal as shown at left to TP38 from TG7, then measure the \#32 (HD out) waveform phase difference CPs and pulse width CPW in relation to the \#40 (AFC1 FILTER) waveform.
D_{23}	HD Output Start Phase HD Output Pulse Width HD Output Amplitude	OFF	A		Input a signal as shown at left to TP38 from TG7, then measure the \#32 (HD out) waveform phase difference HD s and pulse width $H D_{W}$ and $V_{H D}$ in relation to the \#40 (AFC1 FILTER) waveform.
D_{24}	Gate Pulse Start Phase Gate Pulse Width	OFF	A		Input a signal as shown at left to TP38 from TG7, then measure the \#34 (FBP in) waveform phase difference GPs and pulse width GP_{W} in relation to the \#40 (AFC1 FILTER) waveform.

Note D24 : Gate pulse V mask period

NOTE	ITEM	TEST CONDITIONS (DEF $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS} \mathrm{DATA}=$ POWER-ON RESET)		
		SW	ODE	MEASUREMENT METHOD
		SW_{34}	SW_{38}	
D_{25}	Gate Pulse V Mask Period	OFF	A	Input a composite video signal to TP38, observe the \#34 (FBP in) waveform, and measure the V mask period.
D_{26}	Sync Out Low Level	OFF	A	Input a composition video signal to TP38, observe the \#36 (Sync out) waveform, and measure the low level of the sync period.
D_{27}	Vertical Oscillation Start Voltage	OFF	B	(DEF V_{CC}) Increase the voltage from 0 V . When a pulse is output from \#33 (VD out), measure the voltage. (Apply only DEF V_{Cc}.)
D_{28}	Vertical Free-Run Frequency	OFF	B	Measure the frequency of \#33 (VD out).
D_{29}	Vertical Output Voltage	OFF	B	1) Measure the high level voltage of the \#33 (VD out) waveform. (V_{VH}) 2) Measure the low level voltage of the \#33 (VD out) waveform. (V_{VL})
D_{30}	Service Mode Switching	OFF	B	When the subaddress (0C) D_{0} is set to (1), check that the \#27 (V.Ramp) waveform is low (3.4 V DC).
D_{31}	Vertical Pull-In Range	OFF	C	Input a composite video signal to TP38, vary the vertical frequency of this signal in $0.5-\mathrm{H}$ steps, and measure the vertical pull-in range.
D_{32}	Vertical Frequency Forced 263H Vertical Frequency Forced 262.5 H	OFF	B	1) Measure the number of H periods of $\# 33$ (HD out) when the subaddress (0D) D_{1} and D_{0} are set to (10). (f_{1}) 2) Measure the number of H periods of \#33 (HD out) when the subaddress (0D) D_{1} and D_{0} are set to (11). ($f \mathrm{f}_{2}$)
D_{33}	Vertical Blanking Off Mode	OFF	B	Set the subaddress (01) D_{7} to (1) and check that no vertical or horizontal blanking pulse is applied to \#13 (R out), \#14 (G out), or \#15 (B out).

NOTE	ITEM	TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)		
		SW	ODE	MEASUREMENT METHOD
D_{34}	Vertical Output Pulse Width	OWF	SW ${ }^{\text {c }}$	Input a composite video signal to TP38, then measure the \#33 (VD out) vertical pulse delay T_{D} and pulse width T_{W} in relation to the vertical sync signal of \#38 (Sync in).
D_{35}	RGB Output Vertical Blanking Pulse Start PhaseRGB Output Vertical Blanking Pulse Stop Phase	OFF	C	Input a composite video signal to TP38, then measure the \#13 (R out) waveform phase difference $\mathrm{VR}_{\mathrm{S} 1}$ and pulse width $\mathrm{VR}_{\mathrm{S} 2}$ in relation to the \#38 (Sync in) waveform. Repeat measurement on \#14 and \#15. Set the subaddress (11) $\mathrm{D}_{4} \sim \mathrm{D}_{1}$ to (1111) and the subaddress (12) $\mathrm{D}_{4} \sim \mathrm{D}_{1}$ to (1111).
D_{36}	V Cycle Black Peak Detection Disable Pulse (Normal)	OFF	C	Input a composite video signal to TP38 and measure the V cycle black peak detection disable pulse period of \#55 (BLACK PEAK DET).
D_{37}	V Cycle Black Peak Detection Disable Pulse (Zoom)	OFF	C	Under the conditions in D_{38} above, set the subaddress (0 C) D 1 to (1) and measure the V cycle black peak detection disable period of \#55.

Note D34 : Vertical output pulse width, vertical output pulse phase variation, and vertical output pulse phase range

Note D35 : RGB output vertical blanking pulse start and stop phases

Note D36 : Video mute period (normal)

Field 2 to field 1

Field 1 to field 2

D37 : Video mute period (zoom)

Field 2 to field 1

Field 1 to field 2

Note D38 : V cycle black peak detection disable pulse (normal)
Field 2 to field 1

Field 1 to field 2

Note D39 : V cycle black peak detection disable pulse (zoom)
Field 2 to field 1

Field 1 to field 2

Deflection correction stage

NOTE	ITEM	TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)	
		$\begin{gathered} \frac{\text { SW MODE }}{} \\ \hline S_{28} \\ \hline \end{gathered}$	MEASUREMENT METHOD
G_{1}	Vertical Ramp Amplitude	A	Measure the amplitude of the vertical ramp wave on \#27.
G_{2}	Vertical Amplification	A	Set \#24 and \#25 to open. Set the subaddress (0C) data to (81). Connect \#25 to an external power supply. When the voltage is varied from 5.5 V to 6.5 V , measure the vertical amplification on the \#24 voltage. $\left(\mathrm{G}_{\mathrm{V}}\right)\left(\mathrm{V}_{\mathrm{H} 24}\right)\left(\mathrm{V}_{\mathrm{L} 24}\right)$
G_{3}	Vertical Amp Maximum Output Voltage	A	
G_{4}	Vertical Amp Minimum Output Voltage	A	
G_{5}	Vertical Amp Maximum Output Current	A	Set \#24 and \#25 to open. Apply 7 V to \#25 from an external source. Insert an ammeter between \#24 and GND, and measure the current.
G_{6}	Vertical NF Sawtooth Wave Amplitude	A	Measure the amplitude of the \#25 waveform (vertical sawtooth waveform).
G_{7}	Vertical Amplitude Range	A	When the subaddress (0 C) data are set to (00) and (FC), measure the amplitudes of the \#25 waveform (vertical sawtooth waveform) $\mathrm{V}_{\mathrm{P} 25}$ (00) and $\mathrm{V}_{\mathrm{P} 25}$ (FC). $V_{P H}= \pm \frac{V_{P 25(F C)}-V_{P 25(00)}}{V_{P 25(F C)}+V_{P 25(00)}} \times 100(\%)$

NOTE	ITEM	TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)		
		$\frac{\text { SW MODE }}{\text { SW }}$	MEASUREMENT METHOD	
G_{8}	Vertical Linearity Correction Maximum Value	A	Set the subaddress (0 E) data to (F 8). Change the subaddress (10) $\mathrm{D}_{7} \sim \mathrm{D}_{4}$ so that the \#22 parabola waveform is symmetrical. Set the subaddress (0 E) data to (00). When the subaddress (0 F) data are (80), measure the \#25 waveform V_{1} (80) and V_{2} (80). Likewise, when the subaddress (0 F) data are (00) and (F0), measure $\mathrm{V}_{1}(00), \mathrm{V}_{2}(00)$, V_{1} (FO), and V_{2} (FO). $\mathrm{V}_{\mathrm{I}}= \pm \frac{\mathrm{V}_{1(00)}-\mathrm{V}_{1(\mathrm{FO})}+\mathrm{V}_{2(\mathrm{FO})}-\mathrm{V}_{2(00)}}{2 \times\left(\mathrm{V}_{1(80)}+\mathrm{V}_{2(80)}\right)}$	\#22
G_{9}	Vertical S Correction Maximum Value	A	Set the subaddress (0E) data to (F8). Change the subaddress (10) $\mathrm{D}_{7} \sim \mathrm{D}_{4}$ so that the \#22 parabola waveform is symmetrical. Set the subaddress (0E) data to (00). When the subaddress (0E) data are (80), measure the amplitude of the \#25 waveform $V_{S 25}$ (80). Likewise, when the subaddress (0E) data are (87), measure the amplitude of the \#25 waveform $\mathrm{V}_{\mathrm{S} 25}$ (87). $V_{S}= \pm \frac{V_{S 25(80)}-V_{S 25(87)}}{V_{S 25(80)}} \times 100(\%)$	

NOTE	ITEM	TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)	
		$\begin{gathered} \hline \text { SW MODE } \\ \hline \mathrm{SW}_{28} \\ \hline \end{gathered}$	MEASUREMENT METHOD
G_{10}	Vertical NF Center Voltage	A	Set the subaddress data (0 E) to (F 8). Change the subaddress (10) $\mathrm{D}_{7} \sim \mathrm{D}_{4}$ so that the \#22 parabola waveform is symmetrical. Set the subaddress data (0 E) to (00). Measure the center voltage V_{C} of the $\# 25$ waveform.
G_{11}	Vertical NF DC Change	A	Under the conditions in G_{10} above, set the subaddress (13) data to (80) and measure the vertical NF center voltage $\mathrm{V}_{\mathrm{C}}(80)$. Next, set the subaddress (13) data to (00) and measure the vertical NF center voltage $\mathrm{V}_{\mathrm{C}}(00)$. $\mathrm{V}_{\mathrm{DC}}= \pm \mathrm{V}_{\mathrm{C}(00)}-\mathrm{V}_{\mathrm{C}(80)} \quad(\mathrm{V})$
G_{12}	Vertical Amplitude EHT Correction	A	Set the subaddress (0 E) data to (F 8). Change the subaddress (10) $\mathrm{D}_{7} \sim \mathrm{D}_{4}$ so that the \#22 parabola waveform is symmetrical. Set the subaddress (0 E) data to (00). Connect \#28 to GND and measure the amplitude of the \#25 waveform $\mathrm{V}_{\mathrm{EHT}}(0 \mathrm{~V})$. Connect \#28 to a $5-\mathrm{V}$ power supply and measure the amplitude of the \# 25 waveform $\mathrm{V}_{\mathrm{EHT}}(5 \mathrm{~V}$). $\mathrm{VEHT}=\frac{\mathrm{V}_{\mathrm{EHT}}(5 \mathrm{~V})-\mathrm{V}_{\mathrm{EHT}(0 \mathrm{~V})}}{\mathrm{V}_{\mathrm{EHT}}(5 \mathrm{~V})} \times 100(\%)$

NOTE	ITEM	TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)	
		$\frac{\text { SW MODE }}{S_{28}}$	MEASUREMENT METHOD
G_{16}	E-W NF Corner Correction (Corner)	A	Set the subaddress (0E) data to (F8). Change the subaddress (10) $D_{7} \sim D_{4}$ so that the \#22 parabola waveform is symmetrical. Set the subaddress (10) $\mathrm{D}_{3} \sim \mathrm{D}_{0}$ to (0) and measure the amplitude of the $\# 22$ waveform $\mathrm{V}_{\mathrm{CR}}(0)$. Likewise, when the subaddress (10) data are set to (F), measure the \#22 waveform amplitude $V_{C R(F)}$. $V_{C R}=V_{C R(F)}-V_{C R(0)}$
G_{17}	Parabola Symmetry Correction	A	Set the subaddress (14) data to (7F). Set the subaddress (10) data to (00) and measure the vertical NF center voltage of the \#25 waveform $\mathrm{V}_{\mathrm{C}}(00)$. Likewise, when the subaddress (10) data are set to (FC), measure the \#25 voltage V_{C} (FC). $\mathrm{V}_{\mathrm{TR}}= \pm \frac{\mathrm{V}_{\mathrm{C}(00)}-\mathrm{V}_{\mathrm{C}(\mathrm{FC})}}{2 \times \mathrm{V}_{\mathrm{P} 25}} \times 100(\%)$

1) Input signal C-1

2) Input signal C-2

3) Input signal C-3

Fig.C Test signals for TA1310ANG chroma, color difference, and Y stage

1) Video signal

2) Input signal 1

3) Input signal 2

Fig.T-1 Test signals for TA1310ANG text stage

Fig.T-2 Test pulses for TA1310ANG text stage

TEST CIRCUIT

DC

TEST CIRCUIT

AC characteristics for picture sharpness stage

Chroma stage

TEST CIRCUIT

Color difference stage

TEST CIRCUIT

Y stage

TEST CIRCUIT

Diflection stage and deflection correction stage

APPLICATION CIRCUIT

PACKAGE DIMENSIONS

Weight: 5.55 g (Typ.)

About solderability, following conditions were confirmed

- Solderability
(1) Use of $\mathrm{Sn}-63 \mathrm{~Pb}$ solder Bath
- solder bath temperature $=230^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux
(2) Use of $\mathrm{Sn}-3.0 \mathrm{Ag}-0.5 \mathrm{Cu}$ solder Bath
- solder bath temperature $=245^{\circ} \mathrm{C}$
- dipping time $=5$ seconds
- the number of times = once
- use of R-type flux

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

