Advance Information
 1.9 GHz CDMA
 Upmixer/Exciter

The MRFIC1854A is an integrated upmixer and exciter amplifier designed specifically for PCS CDMA digital cellular radios. The exciter amplifier incorporates a temperature compensated linear gain control and selectable bias to reduce power consumption. The design utilizes Motorola's RF BiCMOS1 process to yield superior performance in a cost effective monolithic device.

- Total Supply Current CDMA Mode $=55 \mathrm{~mA}$ Typical
- 65 dB Dynamic Range Gain Control
- Upmixer Output IP3 $=6.0 \mathrm{dBm}$ Typical
- Exciter Output IP3 = 22 dBm Typical
- Supply Voltage Range =2.7 to 3.6 V
- Adjacent Channel Power (ACPR) @ 1.25 MHz Offset $\left(P_{\text {out }}=3.0 \mathrm{dBm}\right)=-58 \mathrm{dBc}$ Typical

MRFIC1854A

1.9 GHz CDMA UPMIXER/EXCITER

SEMICONDUCTOR

 TECHNICAL DATA
(Scale 2:1)

PLASTIC PACKAGE
CASE 948M
(TSSOP-20EP, Tape \& Reel Only)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MRFIC1854AR2	$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	TSSOP-20EP

MRFIC1854A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	5.0	V
IF Input	IF In+, IF In-	10	dBm
LO Input	LO	10	dBm
Operating Temperature	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Recommended Operating Conditions and Electrical Characteristics tables or Pin Descriptions section.
2. Meets Human Body Model (HBM) $\leq 50 \mathrm{~V}$ and Machine Model (MM) $\leq 40 \mathrm{~V}$. This device is rated Moisture Sensitivity Level (MSL) 4. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	2.7	-	3.6	V
RF Frequency Range	f_{RF}	1700	-	2000	MHz
IF Frequency Range	f / F	70	-	250	MHz
LO Frequency Range	f LO	1500	-	2100	MHz
Gain Control Voltage Range	$\mathrm{IF} \mathrm{V}_{\text {cntrl }}$, RF $\mathrm{V}_{\text {Cntrl }}$	0.1	-	1.7	V

ELECTRICAL CHARACTERISTICS (VCC $=2.7 \mathrm{~V}, \mathrm{PLO}=-13 \mathrm{dBm} @ 2010 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-27 \mathrm{dBm}$ (differential) @ 130 MHz ,
$\mathrm{V}_{\text {Enable1 }}=\mathrm{V}_{\text {Enable2 }}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, Test Circuit in Figure 1, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

CASCADE PERFORMANCE (Filter included between RF Out and Exciter input. Filter insertion loss is 4.0 dB)

Output Power $\begin{aligned} & \mathrm{V}_{\mathrm{ctrl}}=1.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ctrl}}=1.3 \mathrm{~V} \end{aligned}$	Pout	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	5.0 3.8		dBm
Dynamic Range ($\mathrm{V}_{\text {ctrl }}=0.1$ to 1.7 V)	DR	50	65	-	dB
Adjacent Channel Power @ 1.25 MHz Offset High Current (Bias Select $=0.4 \mathrm{~V}, \mathrm{P}_{\text {out }}=3.0 \mathrm{dBm}\left(\right.$ set by $\left.\mathrm{V}_{\text {ctrl }}\right)$)	ACPR	-52	-58	-	dBc
Supply Current High Current (Bias Select $=0.4 \mathrm{~V}$) Low Current (Bias Select = 2.4 V)	Icc	-	55 35	80 50	mA

MIXER SECTION

Conversion Gain	GC_{C}	-	16	-
Noise Figure	NF	-	12	-
Output Third Order Intercept Point	OIP3	-	6.0	-
IF AGC Dynamic Range	DRIF	25	38	-

EXCITER SECTION

Gain (No Attenuation)	G	-	24	-	dB
Noise Figure	NF	-	5.0	-	dB
Output Third Order Intercept Point	OIP3	-	22	-	dBm
RF AGC Dynamic Range	DRRF	25	38	-	dB

MRFIC1854A

PIN FUNCTION DESCRIPTION

Pin	Function	Description	Voltage On (V)	Voltage Off (V)
1	IF In+	Mixer IF input pin. Input impedance is 500Ω.	-33 dBm (Typ)	
2	Enable 1 (See Table 1)	Enable pin. A logic "High" (>2.4 V) enables entire chip and "Low" (<0.4 V) disables chip.	2.4 to 3.6	0 to 0.4
3	LO In	Mixer LO input pin.	-13 dBm (Typ)	
4	Bias Select	Bias select pin. Logic "Low" (<0.4 V) selects higher current bias for increased linearity and output power. "High" (>2.4 V) selects lower bias for reduced current consumption.		
5	IF AGC Control Voltage	IF AGC gain control pin. A 30 dB dynamic range can be acheived by adjusting voltage from 0.1 V (low gain) to 1.7 V (high gain).	0.1 to 1.7	
6	$\mathrm{V}_{\text {CC3 }}$	Supply Voltage.	2.7 to 3.6	
7	Gnd	Ground connection.	-	
8	$\mathrm{V}_{\mathrm{CC} 1}$	Supply Voltage	2.7 to 3.6	
9	RF AGC Control Voltage	RF AGC control pin. A 30 dB dynamic range can be acheived by adjusting voltage from 0.1 V (low gain) to 1.7 V (high gain).	0.1 to 1.7	
10	Exciter Out	RF exciter amplifier output pin.	-	
11	Enable 2 (See Table 1)	Tx Enable pin. A logic "High" (>2.4 V) enables Tx path and "Low" (<0.4 V) disables Tx path except LO Buffer.	2.4 to 3.6	0 to 0.4
12	$\mathrm{V}_{\mathrm{CC} 2}$	Supply Voltage	2.7 to 3.6	
13	Exciter In	RF exciter amplifier input pin.	-	
14	Gnd	Ground connection.	-	
15	Gnd	Ground connection.	-	
16	Gnd	Ground connection.	-	
17	RF Out-	Mixer RF output pin.		
18	RF Out+	Mixer RF output pin.		
19	$\mathrm{V}_{\text {CC4 }}$	Supply Voltage	2.7 to 3.6	
20	IF In-	Mixer IF input pin. Input impedance is 500Ω.	-33 dBm (Typ)	

Table 1. Enable Truth Table

Enable 1	Enable 2	Mode
0	0	Disabled
0	1	Not Applicable
1	0	Standby Mode: Disables mixer/exciter, except LO buffer
1	1	Tx Enabled

MRFIC1854A

Figure 1. Application Circuit

NOTES: 1. IF ports matched to 50Ω for testing purposes.
2. Microstrip line and C7 form part of RF AGC/Exciter interstage match.
3. $\mathrm{Er}=4.45$ and board thickness $=18$ mils.

Figure 2. Gain versus Frequency
(Low Current Mode)

Figure 4. Gain versus LO Power (Low Current Mode)

Figure 6. LO Feedthrough versus Control Voltage (Low Current Mode)

Figure 3. Gain versus Frequency (High Current Mode)

Figure 5. Gain versus LO Power (High Current Mode)

Figure 7. LO Feedthrough versus Control Voltage (High Current Mode)

Figure 8. Output Power versus Control Voltage (Low Current Mode)

Figure 9. Output Power versus Control Voltage (High Current Mode)

Figure 10. Adjacent Channel Power versus Control Voltage (High Current Mode)

MRFIC1854A

APPLICATION INFORMATION

Design Philosophy

The MRFIC1854A has three operating states, enable, standby, and disable. These states are controlled by the truth table shown in Table 1. The device is fully operational during the enable state and the bias level can be selected. A high bias current for maximum power CDMA or a lower bias current for CDMA at lower powers can be selected via the Bias Select pin. In the high current CDMA mode, the quiescent current is increased to maximize the linearity of the device. In the lower current bias state, the quiescent current is reduced to save current during lower power CDMA operation. The standby mode can be used to reduce current consumption during Voice Activity Factoring. In the standby mode, the LO buffer remains on to prevent VCO pulling and the bandgap reference bias circuit remains on to assure rapid device turn on. Current consumption in standby mode is 10 mA typical. The disable mode is used to turn the MRFIC1854A completely off. Leakage current in this mode is only a few microamps.

The mixer is a double-balanced "Gilbert-cell" design with a balanced LO buffer amplifier. The input and output of the mixer are differential. The IF AGC is a differential amplifier that uses the "current steering" method for gain control. The IF AGC/mixer combination has 16 dB of gain and typically draws 20 mA quiescent current in the CDMA mode. An external filter is required between the mixer and RF AGC amplifier to reduce RX band noise.

Figure 1 shows the applications circuit for the MRFIC1854A. In this circuit, the IF ports of the IF AGC have been matched to 50Ω for testing purposes. In the actual application, the differential IF ports of the mixer would be impedance matched to an IF SAW filter. The differential impedance of the IF ports is 1600 ohms. The RF output of the mixer is configured as a differential output. A stripline balun is used to convert the RF output to single ended. DC current to the open collector output of the mixer is provided by inductor, L3 (18 nH) and transmission line, T4. Transmission lines T3 and T4, and capacitors C15 (30 pF) and C14 (3.6 pF) form the balun/output match for the mixer.

The RF AGC amplifier is a single-ended cascode design employing the standard "current steering" method of gain control. It's ground is brought out through pin number 15 so inductance can be added to degenerate the gain for a lower noise floor. The maximum gain is around 13 dB . It typically
draws 9.0 mA quiescent current in CDMA mode. The RF $\mathrm{V}_{\text {cntrl }}$ signal is buffered with an on-chip OpAmp then preconditioned with temperature compensation and dB / V linearization before being applied to the RF AGC amplifier.

Transmission line T2 and capacitor C7 (47 pF) are for the interstage match between the RF AGC and the exciter amplifier.

The exciter amplifier is a simple common emitter design. It is grounded directly to the exposed pad which results in 12 dB of gain. It typically draws 24 mA bias current in CDMA. Inductor L2 (10 nH), capacitor C8 (30 pF), and C10 (30 pF) provide the output matching. L2 also provides a DC current path for the open collector output.

Noise Power Considerations

In CDMA systems, the handset is required to dynamically adjust its output power to specific levels. This requires a dynamic range of as much as 90 dB from the transmitter. Another key performance specification in CDMA systems is the output noise power, both in band and out of band. Noise power specifications has caused the noise figure of the transmitter to become an important system consideration. The cascaded noise figure of the transmitter can be analyzed with the same equation used in receiver analysis. The only difference is the noise source is from the transmitter (modulator) instead of the atmosphere.

This equation above shows that the cascaded noise figure is better if the gain is higher and the noise figure is lower for the stages close to the noise source. For this reason, it is advantageous to implement some of the gain control of a CDMA transmitter in the RF section. The MRFIC1854A integrates a RF AGC amplifier after the upmixer to improve the overall noise figure of the transmitter.

MRFIC1854A

Table 2. Scattering Parameters for Exciter Amplifier
$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF} \mathrm{V}_{\text {cntrl }}=1.8 \mathrm{~V}, 50 \Omega\right.$ System $)$

\mathbf{f}	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
1700	0.319	-121.64	15.566	84.09	0.00476	-139.21	0.219	-12.29
1725	0.315	-123.78	16.291	76.55	0.00415	-126.71	0.222	-24.12
1750	0.310	-126.93	16.975	68.23	0.00406	-143.61	0.223	-35.58
1775	0.309	-130.34	17.590	56.64	0.00336	-143.09	0.237	-51.49
1800	0.304	-132.64	17.834	47.84	0.00406	-144.41	0.248	-64.80
1825	0.294	-137.08	17.944	35.98	0.00268	-141.85	0.271	-82.53
1850	0.286	-139.92	17.871	26.91	0.00411	-127.38	0.278	-94.74
1875	0.274	-141.87	17.591	17.93	0.00286	-132.49	0.298	-104.71
1900	0.261	-143.08	17.141	9.25	0.00351	-136.62	0.308	-114.83
1925	0.249	-145.61	16.374	-1.69	0.00447	-139.69	0.324	-128.42
1950	0.242	-146.86	15.738	-9.57	0.00322	-153.09	0.335	-137.57
1975	0.233	-148.86	15.046	-17.01	0.00411	-139.41	0.346	-146.12
2000	0.225	-149.74	14.132	-26.57	0.00490	-139.12	0.350	-155.24

MRFIC1854A

Table 3. Scattering Parameters for Upmixer
$\left(\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, IF $\mathrm{V}_{\text {cntrl }}=1.8 \mathrm{~V}, 50 \Omega$ System $)$

f	IF In+		IF In-		$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	RF Out (Pin 17)	
(MHz)	$\mathrm{S}_{11} \mid$	$\angle \phi$	$\left\|S_{11}\right\|$	$\angle \phi$		$\left\|S_{11}\right\|$	$\angle \phi$
70	0.830	-2.07	0.832	-2.24	1700	0.815	-55.16
80	0.828	-2.73	0.830	-2.71	1725	0.814	-55.65
90	0.826	-3.01	0.828	-2.95	1750	0.814	-56.29
100	0.826	-3.21	0.827	-3.22	1775	0.817	-56.98
110	0.822	-3.57	0.825	-3.67	1800	0.820	-57.45
120	0.821	-3.74	0.823	-3.93	1825	0.823	-58.68
130	0.821	-3.93	0.823	-4.08	1850	0.825	-59.57
140	0.818	-4.25	0.820	-4.42	1875	0.826	-60.85
150	0.818	-4.54	0.821	-4.57	1900	0.825	-62.07
160	0.818	-4.61	0.820	-4.76	1925	0.815	-63.81
170	0.817	-4.85	0.819	-5.06	1950	0.807	-64.79
180	0.815	-5.12	0.819	-5.29	1975	0.794	-65.64
190	0.815	-5.26	0.819	-5.50	2000	0.782	-66.58
200	0.813	-5.45	0.816	-5.76			
210	0.815	-5.71	0.818	-6.15			
220	0.812	-5.82	0.816	-6.13			
230	0.811	-6.38	0.817	-6.54			
240	0.812	-6.54	0.814	-6.72			
250	0.810	-6.76	0.815	-6.98			

$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	LO In		$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	LO In		$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	LO In	
	$\left\|\mathrm{S}_{11}\right\|$	$\angle \phi$		$\left\|\mathrm{S}_{11}\right\|$	$\angle \phi$		$\left\|S_{11}\right\|$	$\angle \phi$
1500	0.708	-47.83	1725	0.677	-54.36	1950	0.624	-58.20
1525	0.704	-48.38	1750	0.670	-55.34	1975	0.623	-59.40
1550	0.702	-49.02	1775	0.654	-56.33	2000	0.612	-60.59
1575	0.696	-49.55	1800	0.641	-56.34	2025	0.605	-61.04
1600	0.694	-50.11	1825	0.636	-56.65	2050	0.599	-61.70
1625	0.691	-50.83	1850	0.631	-56.59	2075	0.592	-62.19
1650	0.688	-51.47	1875	0.630	-57.04	2100	0.588	-62.99
1675	0.691	-52.18	1900	0.626	-57.38			
1700	0.681	-53.42	1925	0.622	-57.84			

MRFIC1854A

OUTLINE DIMENSIONS

```
PLASTIC PACKAGE
CASE 948M-01
(TSSOP-20EP)
ISSUE O
```


NOTES
1 DIMENSIONS ARE IN MILLIMETERS.
INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
3 DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
4 DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.
5 DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.
6 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7 DIMENSIONS D AND E1 ARE TO BE DETERMINED AT DATUM PLANE H

DIM	MILLIMETERS	
	MIN	MAX
A	-	1.20
A1	0.00	0.10
b	0.19	0.30
b1	0.19	0.25
c	0.09	0.20
c1	0.09	0.16
D	6.40	6.60
E	6.40 BSC	
E1	4.30	4.50
e	0.65	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and \mathbb{M} are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

