FEATURES

■ Max. shift frequency of 700 MHz
■ Clock to Q delay max. of 1100ps

- Sn to TC speed improved by 50%

■ Sn set-up and hold time reduced by more than 50%
■ Iee min. of -170 mA
■ Industry standard 100K ECL levels

- Internal $75 \mathrm{~K} \Omega$ input pull-down resistors

■ Extended supply voltage option:
VEE $=-4.2 \mathrm{~V}$ to -5.5 V
■ Voltage and temperature compensation for improved noise immunity

- 50\% faster than Fairchild 300 K at lower power
- Function and pinout compatible with Fairchild F100K

■ Available in 24-pin CERPACK and 28-pin PLCC packages

PIN CONFIGURATIONS

DESCRIPTION

The SY100S336A is functionally the same as the SY100S336, but has Sn to TC speed and Sn set-up and hold times significantly improved, allowing for higher clock frequency when used as a cascaded multi-stage counter.

The SY100S336A functions either as a modulo-16 up/ down counter or as a 4-bit bidirectional shift register and is designed for use in high-performance ECL systems. Three Select inputs (Sn) are provided for determining the mode of operation. The Function Table lists the available modes of operation. In order to allow cascading for multistage counters, two Count Enable controls ($\overline{\mathrm{CEP}}, \overline{\mathrm{CET}})$ are provided. The $\overline{\mathrm{CET}}$ input also functions as the Serial Data input (So) for a shift-up operation, while the D3 input serves as the Serial Data input for the shift-down operation.

When the device is in the counting mode, the Terminal Count ($\overline{\mathrm{TC}}$) goes to a logical LOW when the count reaches 15 for count-up or reaches 0 for count-down. When in the shift mode, the $\overline{\mathrm{TC}}$ output simply repeats the Q3 output.

The flexiblity provided by the TC/Q3 output and the Do/ $\overline{C E T}$ input allows these signals to be interconnected from one stage to the next higher stage for multistage counting or shift-up operations. The individual Presets (Pn) allow initialization of the counter by entering data in parallel to preset the counter. A logic HIGH on the Master Reset (MR) overrides all other inputs and asynchronously clears the flip-flops. An additional synchronous Clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops. All inputs have $75 \mathrm{~K} \Omega$ pulldown resistors.

PIN NAMES

Pin	Function
CP	Clock Pulse Input
CEP	Count Enable Parallel Input (Active LOW)
Do/CET	Serial Data Input/Count Enable Trickle Input (Active LOW)
So - S2	Select Inputs
MR	Master Reset Input
VEES	VEe Substrate
VcCA	Vcco for ECL Outputs
P0 - P3	Preset Inputs
D3	Serial Data Input
$\overline{\mathrm{TC}}$	Terminal Count Output
$\mathrm{Q} 0-\mathrm{Q} 3$	Data Outputs
$\overline{\mathrm{Q} 0-\overline{\mathrm{Q}} 3}$	Complementary Data Outputs

BLOCK DIAGRAM

TRUTH TABLE(1)

Inputs								Outputs					
MR	S2	S1	So	CEP	Do/CET	D3	CP	Q0	Q1	Q2	Q3	TC	Mode
L	L	L	L	X	X	X	u	Po	P1	P2	P3	L	Preset (Parallel Load)
L	L	L	H	X	X	X	u	$\overline{\mathrm{Q} 0}$	Q1	$\overline{\text { Q2 }}$	Q3	L	Invert
L	L	H	L	X	X	X	u	Q1	Q2	Q3	D3	D3	Shift Left
L	L	H	H	X	X	X	u	Do	Q0	Q1	Q2	Q3*	Shift Right
L	H	L	L	L	L	X	u	(Q0-3) minus 1				(1)	Count Down
L	H	L	L	H	L	X	X	Q0	Q1	Q2	Q3	(1)	Count Down with $\overline{\mathrm{CEP}}$ Not Active
L	H	L	L	X	H	X	X	Q0	Q1	Q2	Q3	H	Count Down with $\overline{\text { CET }}$ Not Active
L	H	L	H	X	X	X	u	L	L	L	L	H	Clear
L	H	H	L	L	L	X	u	(Q0-3) plus 1				\#	Count Up
L	H	H	L	H	L	X	X	Q0	Q1	Q2	Q3	\#	Count Up with $\overline{\mathrm{CEP}}$ Not Active
L	H	H	L	X	H	X	X	Q0	Q1	Q2	Q3	H	Count Up with $\overline{\mathrm{CET}}$ Not Active
L	H	H	H	X	X	X	X	Q0	Q1	Q2	Q3	H	Hold
H	L	L	L	X	X	X	X	L	L	L	L	L	Asynchronous Master
H	L	L	H	X	X	X	X	L	L	L	L	L	Reset
H	L	H	L	X	X	X	X	L	L	L	L	L	
H	L	H	H	X	X	X	X	L	L	L	L	L	
H	H	L	L	X	L	X	X	L	L	L	L	L	
H	H	L	L	X	H	X	X	L	L	L	L	H	
H	H	L	H	X	X	X	X	L	L	L	L	H	
H	H	H	L	X	X	X	X	L	L	L	L	H	
H	H	H	H	X	X	X	X	L	L	L	L	H	

NOTE:

1. $\mathrm{H}=$ High Voltage Level

L = Low Voltage Level
X = Don't Care
$\mathrm{u}=$ LOW-to-HIGH Transition
(1) $=L$ if $Q_{0}-Q_{3}=L L L L$
H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{LLLL}$
$\neq=L$ if $Q_{0}-Q_{3}=H H H H$
H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{HHHH}$

* Before the clock, $\overline{\mathrm{TC}}$ is Q ; after the clock, $\overline{\mathrm{TC}}$ is Q 2

DC ELECTRICAL CHARACTERISTICS

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
IIH	Input HIGH Current, All Inputs	-	-	200	$\mu \mathrm{~A}$	$\mathrm{VIN}=$ VIH (Max.)
IEE	Power Supply Current	-170	-120	-60	mA	Inputs Open

AC ELECTRICAL CHARACTERISTICS

CERPACK

VEE $=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		$\mathrm{TA}=+25^{\circ} \mathrm{C}$		$\mathrm{TA}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
fshift	Shift Frequency	700	-	700	-	700	-	MHz	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to Qn, Qn	450	1200	450	1200	450	1200	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to TC	600	1900	600	1900	600	1900	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Qn, Qn	500	1400	500	1400	500	1400	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to TC	600	1900	600	1900	600	1900	ps	
tPLH tPHL	Propagation Delay Do/ $\overline{C E T}$ to $\overline{T C}$	400	1200	400	1200	400	1200	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Sn to TC	400	1500	400	1500	400	1500	ps	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	300	900	300	900	300	900	ps	
ts	Set-up Time D3 Pn Do/ $\overline{\text { EET }}$ to $\overline{\mathrm{CEP}}$ Sn MR (Release Time)	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	- - -	ps	
tH	Hold Time D3 Pn Do/ $\overline{\mathrm{CET}}$ to $\overline{\mathrm{CEP}}$ Sn	$\begin{array}{r} 200 \\ 200 \\ 200 \\ -200 \end{array}$	—	$\begin{gathered} 200 \\ 200 \\ 200 \\ -200 \end{gathered}$	-	$\begin{gathered} 200 \\ 200 \\ 200 \\ -200 \end{gathered}$	-	ps	
tpw (H)	Pulse Width HIGH, CP, MR	-	800	-	800	-	800	ps	

AC ELECTRICAL CHARACTERISTICS

PLCC

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		TA $=+25^{\circ} \mathrm{C}$		TA $=+8{ }^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
fshift	Shift Frequency	700	-	700	-	700	-	MHz	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to $\mathrm{Qn}_{\mathrm{n}} \overline{\mathrm{Q}}_{\mathrm{n}}$	450	1100	450	1100	450	1100	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to TC	600	1800	600	1800	600	1800	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Qn, \bar{Q}_{n}	500	1300	500	1300	500	1300	ps	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to TC	600	1800	600	1800	600	1800	ps	
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Do/CET to TC	400	1100	400	1100	400	1100	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Sn to TC	400	1500	400	1500	400	1500	ps	
$\begin{aligned} & \hline \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time300 20% to $80 \%, 80 \%$ to 20%	900	300	900	300	900	ps		
ts	Set-up Time D3 Pn Do/ $\overline{\mathrm{CET}}$ to $\overline{\mathrm{CEP}}$ Sn MR (Release Time)	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	- - -	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	- - -	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	- - -	ps	
tH	Hold Time D3 Pn Do/ $\overline{\text { EET }}$ to $\overline{\text { CEP }}$ Sn	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & -200 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ 200 \\ -200 \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & -200 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	ps	
tpw (H)	Pulse Width HIGH, CP, MR	-	800	-	800	-	800	ps	

TIMING DIAGRAMS

Propagation Delay (Clock) and Transition Times

Propagation Delay (Reset)

TIMING DIAGRAMS

Propagation Delay (Serial Data, Selects)

Set-up and Hold Time

NOTES:

1. $\mathrm{Vee}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VcC}=\mathrm{VcCA}=\mathrm{GND}$.
2. ts is the minimum time before the transition of the clock that information must be present at the data input.
3. $t \mathrm{t}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input.

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range
SY100S336AFC	F24-1	Commercial
SY100S336AJC	J28-1	Commercial
SY100S336AJCTR	J28-1	Commercial

24 LEAD CERPACK (F24-1)

NOTES:

1. DIMENSIONS ARE IN INCHES[MM].
2. THIS DIMENSION INCLUDES GLASS PROTRUSION

AND CAP TO BASE ALIGNMENT TOLERANCES.
3. DIMENSIONS SHOWN ARE MAX/MIN,

WHERE NOTED.

28 LEAD PLCC (J28-1)

Rev. 03

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

