3 Watt Cellular T/R and Antenna Changeover Switch, DC - 3.0 GHz

Features

- Low Cost Plastic SOT-26 Package
- Low Insertion Loss <0.6dB @ 1900 MHz
- Low Power Consumption <20 $\mu \mathrm{A} @+3 \mathrm{~V}$
- Very High Intercept Point: $53 \mathrm{dBm} \mathrm{IP}_{3}$
- Both Positive and Negative 2.5 to 8 V Control
- For CDMA, W-CDMA, TDMA, GSM, PCS and DCS Applications

Description

M/A-COM's SW-425 is a GaAs monolithic switch in a low cost SOT-26 surface mount plastic package. The SW-425 is ideally suited for applications where very low power consumption $(<10 \mu \mathrm{~A} @ 5 \mathrm{~V})$, low intermodulation products and very small size are required. Typical applications include Internal/External antenna select switch for portable telephones and data radios. In addition, because of its low loss, good isolation and inherent speed, the SW-425 can be used as a conventional T/R switch or as an antenna diversity switch. The SW-425 can be used in power applications up to 3 watts in systems such as celluar PCS, CDMA, W-CDMA, TDMA, GSM and other analog/digital wireless communications systems.

The SW-425 is fabricated using a new 0.5 micron gate length GaAs PHEMT process. The process features full chip passivation for increased performance and reliability.

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	DC-1 GHz	dB		0.4	0.5
Insertion Loss	$1-2 \mathrm{GHz}$	dB		0.55	0.65
Insertion Loss	2-3 GHz	dB		0.7	0.8
Isolation	DC-1 GHz	dB	18	20	
Isolation	1-2 GHz	dB	13	15	
Isolation	2-3 GHz	dB	10	12	
VSWR	DC - 3 GHz			1.2:1	1.4:1
$\mathrm{P}_{\text {1dB }}$ (3V supply)	$500 \mathrm{MHz}-3 \mathrm{GHz}$	dBm	32	34	
$\mathrm{P}_{\text {1dB }}$ (5V supply)	$500 \mathrm{MHz}-3 \mathrm{GHz}$	dBm	34	36	
Input IP_{2}	$\begin{aligned} & \text { 2-Tone, } 5 \mathrm{MHz} \text { spacing, } \quad 0.9 \mathrm{GHz} \\ & +10 \mathrm{dBm}\left(+13 \mathrm{dBm} \text { total) } \mathrm{V}_{\text {cTL }}=3 \mathrm{~V}\right. \\ & \hline \end{aligned}$	dBm	62	70	
Input IP_{3}	$\begin{aligned} & \text { 2-Tone, } 5 \mathrm{MHz} \text { spacing, } \quad 0.9 \mathrm{GHz} \\ & +10 \mathrm{dBm}\left(+13 \mathrm{dBm} \text { total) } \mathrm{V}_{\text {CTL }}=3 \mathrm{~V}\right. \\ & \hline \end{aligned}$	dBm	48	53	
Harmonics $2^{\text {nd }}$ $3^{\text {rd }}$	Pin $30 \mathrm{dBm}\left\|\mathrm{V}_{\text {ctL }}\right\|=3 \mathrm{~V}$	dBc	$\begin{aligned} & 65 \\ & 45 \end{aligned}$	$\begin{aligned} & 70 \\ & 48 \end{aligned}$	
Harmonics $2^{\text {nd }}$ $3^{\text {rd }}$	Pin $33 \mathrm{dBm}\left\|\mathrm{V}_{\text {ctı }}\right\|=5 \mathrm{~V}$	dBc	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	
$\begin{aligned} & \hline \mathbf{T}_{\text {rise }}, \mathbf{T}_{\text {fall }} \\ & \mathbf{T}_{\text {on }}, \mathbf{T}_{\text {off }} \\ & \text { Transients } \\ & \hline \end{aligned}$	10\% to 90% RF, 90% to 10% RF 50% Control to 90% RF, Control to 10% RF In-Band	$\begin{aligned} & \hline \mathrm{nS} \\ & \mathrm{nS} \\ & \mathrm{mV} \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	
Gate Leakage Current	$\mathrm{V}_{\text {CTL }}=3 \mathrm{~V}$	$\mu \mathrm{A}$		10	20

Ordering Information

Part Number	Package
SW-425 PIN	SOT-26 Plastic Package
SW-425TR	Forward Tape and Reel ${ }^{1}$
SW-425RTR	Reverse Tape and Reel 1

1. Reference Application Note M513 for reel size information.

Absolute Maximum Ratings ${ }^{1}$

Parameter	Absolute Maximum
Max. Input Power $(0.5-3.0 \mathrm{GHz})$	
3 V Control	+36 dBm
5 V Control	+38 dBm
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

1. Exceeding any one or combination of these limits may cause permanent damage.

Truth Table

Mode (Control)	Control A	Control B	RFC - RF1	RFC - RF2
Positive ${ }^{1}$	$\begin{gathered} 0 \pm 0.2 \mathrm{~V} \\ +2.5 \text { to }+8 \mathrm{~V} \end{gathered}$	$\begin{gathered} +2.5 \text { to }+8 \mathrm{~V} \\ 0 \pm 0.2 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	$\begin{aligned} & \text { On } \\ & \text { Off } \end{aligned}$
Postitive/ Negative ${ }^{1,2}$	$\begin{gathered} -\mathrm{Vc} \pm 0.2 \mathrm{~V} \\ +\mathrm{Vc} \end{gathered}$	$\begin{gathered} +\mathrm{Vc} \\ -\mathrm{Vc} \pm 0.2 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	On Off
Negative ${ }^{3}$	$\begin{gathered} 0 \pm 0.2 \mathrm{~V} \\ -2.5 \mathrm{~V} \text { to }-8 \mathrm{~V} \end{gathered}$	$\begin{gathered} -2.5 \mathrm{~V} \text { to }-8 \mathrm{~V} \\ 0 \pm 0.2 \mathrm{~V} \end{gathered}$	On Off	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$

1. External DC blocking capacitors are required on all RF ports. 39 pF capacitors used for positive control voltage.
2. $\left|-\mathrm{V}_{\text {CTL }}\right|, \mathrm{V}_{\text {CTL }} \leq 8 \mathrm{~V}$
3. If negative control is used, DC blocking capacitors are not required on RF Ports.

Handling Procedures

The following precautions should be observed to avoid damage:

Static Sensitivity

Gallium arsenide Integrated Circuits are ESD sensitive and can be damaged by static electricity. Proper ESD techniques should be used when handling these devices.

Functional Diagram

PIN Configuration

PIN No.	Function	Description
1	RF1	RF in/out
2	GND	RF Ground
3	RF2	RF in/out
4	VB	V Control B
5	RFC	RF COMMON
6	VA	V Control A

Typical Performance Curves

