USE GAL DEVICES FOR NEW DESIGNS

PALCE610 Family

Lattice Semiconductor

EE CMOS High Performance Programmable Array Logic

DISTINCTIVE CHARACTERISTICS

- Lattice/Vantis Programmable Array Logic (PAL) architecture
- Electrically-erasable CMOS technology providing half power (90 mA Icc) at high speed
$--15=15-\mathrm{ns}$ tp
$--25=25-n s$ tpD
- Sixteen macrocells with configurable I/O architecture
- Registered or combinatorial operation

Registers programmable as D, T, J-K, or S-R

GENERAL DESCRIPTION

The PALCE610 is a general purpose PAL device and is functionally and fuse map equivalent to the EP610. It an accommodate logic functions with up to 20 inputs and 16 outputs. There are $16 \mathrm{I} / \mathrm{O}$ macrocells that can be individually configured to the user's specifications. The macrocells can be configured as either registered or combinatorial. The registers can be configured as D, T, $J-K$, or S-R flip-flops.
he PALCE610 uses the familiar sum-of-products logic with programmable-AND and fixed-OR structure. Eight product terms are brought to each macrocell to provide ogic implementations.

BLOCK DIAGRAM

CONNECTION DIAGRAMS

Top View

SKINNYDIP

CLK1 $1 \bullet$	24	Vcc
$1[2$	23]
$1 / 093$	22	$1 / 0_{1}$
$1 / \mathrm{O}_{10} \mathrm{C} 4$	21	$1 / \mathrm{O}_{2}$
$1 / 011{ }^{5}$	20	$1 / \mathrm{O}_{3}$
$1 / \mathrm{O}_{12} \mathrm{C}$	19	$]_{1 / 04}$
$1 / 0_{13} \square 7$	18	I/O5
$1 / \mathrm{O}_{14}$ [8	17	$1 / 0_{6}$
$1 / \mathrm{O}_{15} 9$	16	I/O7
1/016 [10	15	I/08
I 11	14	1
GND 12	13	CLK2

PLCC/LCC

Note:
12950G-3
Pin 1 is marked for orientation

PIN DESIGNATIONS

CLK = Clock
GND = Ground
$1=$ Input
I/O $=$ Input/Output
NC = No Connect
Vcc $=$ Supply Voltage

ORDERING INFORMATION

Commercial Products

Programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of:

Valid Combinations	
PALCE610H-15	PC, JC
PALCE610H-25	

Valid Combinations
Valid Combinations lists configurations planned Valid Combinations lists contigurations planned
to be supported in volume for this device. Consult your local saled os office to confirm availability of specicic valide combinations, and to check on
newly released combinations.

FUNCTIONAL DESCRIPTION

The PALCE610 is a general purpose programmable logic device. It has 16 independently-configurable macombinatorial or registered. The registers can be D, T J -K, or S-R type flip-flops. The device has 4 dedicated input pins and 2 clock pins. Each clock pin controls 8 of the 16 macrocells.
The programming matrix implements a programmable AND logic array which drives a fixed OR logic array. Buffers for device inputs have complementary outputs to provide user-programmable input polarity. Unused input pins should be tied to V cc or ground.

The array uses our electrically erasable technology An unprogrammed bit is disconnected and a programmed bit is connected. Product terms with all bits product terms with both the TRUE and Complement bits programmed assume the logical-LOW state.

The programmable functions in the PALCE610 are automatically configured from the user's design specifisign specification is processed by development software to verify the design and create a programming file. This file, once downloaded to the programmer, configures the design according to the user's desired function.

Macrocell Configurations

The PALCE610 macrocell can be configured as either combinatorial or registered. Both the combinatorial and registered configurations have output polarity control.
S-R type flip-flop. Figure 1 shows the possible configurations.

Each macrocell can select as its clock either the corresponding clock pin or the CLK/OE product term. If the clock pin is selected, the output enable is controlled by the CLK the product in always enabled porm is

Combinatorial I/O

All 8 product terms are available to the OR gate. The output-enable function is performed by the CLK/OE product term.

Registered Configurations

There are 4 flip-flop types available: D, T, J-K and S-R.
The registers can be configured as synchronous or asynchronous. In the synchronous configuration, the clock is controlled by the clock input pin. The output enable is controlled by the product term function. In the
asynchronous configuration, the clock input is con asynch by the product term. The output is alway enabled.
In The D and T configurations, feedback can be either from Q or the output pin. This allows D and T configura tions to be either outputs or I/O. In the J-K and S-R configurations, feedback is only from Q therefore, $\mathrm{J}-\mathrm{K}$ and S-R configurations S-R configurations are strictly outputs.

D Flip-Flop

All 8 product terms are available to the OR gate. The D input polarity is controlled by an exclusive-OR gate. For the D flip-flop, the output level is the D -input level at the rising edge of the clock

\mathbf{D}	$\mathbf{Q}^{\mathbf{n}}$	$\mathbf{Q}^{\mathbf{n + 1}}$
0	0	0
0	1	0
1	0	1
1	1	1

T Flip-Flop

All 8 product terms are available to the OR gate. The T input polarity is controlled by an exclusive-OR gate. For the Tregister, the output level toggles when the T nput is HIGH and remains the same when the T input is LOW.

\mathbf{T}	$\mathbf{Q}^{\mathbf{n}}$	$\mathbf{Q}^{\mathbf{n + 1}}$
0	0	0
0	1	1
1	0	1
1	1	0

J-K Flip-Flop

The 8 product terms are divided between the J and K inputs. N product terms go to the J input and 8 -N product terms go to the K input, where N can range from 0 to 8 . trol via exclusive-OR gates. The J-K flip-flop operation is shown below.

\mathbf{J}	\mathbf{K}	$\mathbf{Q}^{\mathbf{n}}$	$\mathbf{Q}^{\mathbf{n + 1}}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Combinatoria

Figure 1. Macrocell Configurations

S-R Flip-Flop

The 8 product terms are divided between the S and R inputs. N product terms go to the S input and $8-\mathrm{N}$ prod8 . control via S and R inputs to the flip-flop have polarity tion is shown below.

\mathbf{S}	\mathbf{R}	$\mathbf{Q}^{\mathbf{n}}$	$\mathbf{Q}^{\text {n+1 }}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	Not Allowed	

Asynchronous Reset

All flip-flops have an asynchronous-reset product-term input. When the product term is true, the flip-flop will reset to a logic LOW, regardless of the clock and data inputs.

Power-Up Reset

All flip-flops power up to a logic LOW for predictable system initialization. Outputs o the PALCE6 10 depend on whether they are selected as registered or combinatorial. If registered is selected, the output will be LOW. If combinatorial is selected, the output will be a function of the logic. The $V_{c c}$ rise must be monotonic and the reset

Register Preload

The register on the PALCE610 can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired
state. In addition, transitions from illegal states can be state. In addition, transitions from iliegal states can be
verified by loading illegal states and observing proper recovery.

Security Bit

After programming and verification, a PALCE610 de sign can be secured by programming the security bit Once programmed, this bit defeats readback of the in ternal programmed pattern by a device programmer se curing proprietary designs from competitors. However, programming and veritication are also defeated by the security bit. The bit can only be erased in conjunction with the array during the erase cycle. Preload is not af fected by the security bit.

Technology

The PALCE610 is manufactured using our ad vanced Electrically Erasable (EE) CMOS process. This technology uses an EE cell to replace the fuse link in bipolar parts, and allows Lattice to offer lower-power parts or high complexity. In addition, since the EE cells can be factory tested beforemmed, these devices can be 100 . puts and outputs are designed to be compatible with TTL devices. This technology provides strong input clamp diodes, output slew-rate control, and a grounded
substrate for clear switching.

Programming and Erasing

The PALCE610 can be programmed on standard logic programmers. It also may be erased to reset a previerase is automatically performed by the programming hardware. No special erase operation is required.

CMOS Compatibility

The PALCE610 has CMOS-compatible outputs. The output voltage (VOH) is 3.85 V at -2.0 mA .

PALCE610 LOGIC DIAGRAM

DIP (PLCC) Pinouts

2-380
PALCE610 Family

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
Respect to Ground $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Input Voltage \ldots.
DC Output or
I/O Pin Voltage $\ldots \ldots-0.5 \mathrm{~V}$ to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
(
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$)
100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or
above these limits is not implied. Expusure to Absolute Maxiabove these limis is not implied. Exposure to ADsolute Maxi-
mum Ratings for extended periods may affect device reliabil-
ity. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Device

Ambient Temperature (T_{A})
Operating in Free Air
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (VCC)
4.75 V to +5.25 V

Operating ranges define those limits between which the func tionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise

 specified (Note 2)| Parameter Symbol | Parameter Description | Test Conditions | | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vон | Output HIGH Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}^{2} \end{aligned}$ | $\mathrm{I} \mathrm{H}=-4.0 \mathrm{~mA}$ | 2.4 | | V |
| | | | $\mathrm{OH}=-2.0 \mathrm{~mA}$ | 3.84 | | V |
| VoL | Output LOW Voltage | $\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}_{\text {in }} \end{aligned}$ | $\mathrm{loL}=8.0 \mathrm{~mA}$ | | 0.5 | V |
| | | | $\mathrm{loL}=4.0 \mathrm{~mA}$ | | 0.45 | V |
| V_{H} | Input HIGH Voltage | Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1) | | 2.0 | | V |
| VIL | Input LOW Voltage | Guaranteed Input Logical LOW Voltage for all Inputs (Note 1) | | | 0.8 | V |
| | Input HIGH Leakage Current | $\mathrm{V}_{\mathbb{N}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{Cc}}=\operatorname{Max}$ (Note 2) | | | 10 | $\mu \mathrm{A}$ |
| IIL | Input LOW Leakage Current | $\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 2) | | | -10 | $\mu \mathrm{A}$ |
| lozh | Off-State Output Leakage Current HIGH | $\begin{aligned} & \mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=\mathrm{Max} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \text { (Note 2) } \end{aligned}$ | | | 10 | $\mu \mathrm{A}$ |
| lozı | Off-State Output Leakage Current LOW | $\mathrm{V}_{\text {out }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$
 $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or V_{IL} (Note 2) | | | -10 | $\mu \mathrm{A}$ |
| Isc | Output Short-Circuit Current | $\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {cC }}=$ Max (Note 3) | | -30 | -150 | mA |
| Icc | Supply Current | $\begin{aligned} & \left.\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V} \text {, Outputs Open (lout }=0 \mathrm{~mA}\right) \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \end{aligned}$ | | | 90 | mA |

1. These are absolute values with respect to device ground and all overshoots due to system and tester noise are included.
2. WO pin leakage is the worst case of IIL and lozt (or IIH and lozH).
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vout $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=2.0 \mathrm{~V}$	$\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $\mathrm{f}=1 \mathrm{MHz}$	8	
Cout	Output Capacitance	$\mathrm{V}_{\text {out }}=2.0 \mathrm{~V}$	8	pF	

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 2)

Parameter Symbol	Parameter Description			-15		-25		Unit
				Min	Max	Min	Max	
tpo	Input or Feedback to Combinatorial Output				15		25	ns
ts	Setup Time from Input or Feedback to Clock			12		15		ns
t	Hold Time			0		0		ns
too	Clock to Output				8		12	ns
twL	Clock Width	LOW		6		10		ns
twh		HIGH		6		10		ns
fmax	Maximum Frequency (Note 3)	External Feedback	1/(ts + too)	50		37		MHz
		$\begin{aligned} & \text { Internal Feedback } \\ & \text { (fovT) } \\ & \hline \end{aligned}$	$1 /(\mathrm{ts}+\mathrm{tcF})$ (Note 5)	76.1		40		MHz
		No Feedback	1/(twh + twl)	83.3		50		MHz
tea	Input to Output Enable Using Product Term Control				15		25	ns
ter	Input to Output Disable Using Product Term Control				15		25	ns
tar	Asynchronous Reset to Registered Output				15		25	ns
tarw	Asynchronous Reset Width			10		15		ns
tarr	Asynchronous Reset Recovery Time				15		25	ns
tsa	Setup Time from Input or Feedback to Clock (Note 4)			5		8		ns
tha	Hold Time (Note 4)			5		12		ns
tooa	Clock to Output (Note 4)				15		27	ns
twLA	Clock Width	Low (Note 4)		6		10		ns
twha		HIGH (Note 4)		6		10		ns
$f_{\text {maxa }}$	Maximum (Notes 3 and 4)	External Feedback	1/(tsa + tcoa)	50		28.6		MHz
		Internal Feedback (f		61.6		29.4		MHz
		No Feedback	1/(twLA + twha)	83.3		50		MHz

Notes
2. See Switching Test Circuit for test conditions
3. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where frequency may be affected
4. These parameters are measured using the asynchronous product-term clock.
5. tcF is a calculated value and is not guaranteed. tcF can be found using the following equation: $t_{C F}=1 / /_{\text {max }}$ (internal feedback) $-t_{s}$.

SWITCHING WAVEFORMS

Combinatorial Output

Clock Width

12950G-10
Clock Width Using

Input to Output Disable/Enable

Registered Output Using
Product-Term Clock

Notes:

1. $V_{T}=1.5 \mathrm{~V}$

Ise amplitude 0 V to 3.0 V
3. Input trise and fall times 2 ns- 5 ns typical

KEY TO SWITCHING WAVEFORMS

WAVEFORM	InPUTS	OUTPUTS
	Must be Steady	Will be Steady
$\square \square$	May Change from H to L	Will be Changing from H to L
	May Change from L to H	Will be Changing from L to H
$M W$	Don't Care, Any Change Permitted	Changing, State Unknown
$\Rightarrow \sqrt{\square}$	Does Not Apply	Center Line is High Impedance "Off" State

SWITCHING TEST CIRCUIT

Specification	S1	CL	Commercial		Measured Output Value
			R1	R2	
tpo, tco	Closed	35 pF	855 ת	340Ω	1.5 V
tea	$\begin{aligned} & \mathrm{Z} \rightarrow \mathrm{H}: \text { Open } \\ & \mathrm{Z} \rightarrow \mathrm{~L}: \text { Closed } \\ & \hline \end{aligned}$				1.5 V
ter	$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z} \text { : Open } \\ & \mathrm{L} \rightarrow \mathrm{Z} \text { : Closed } \end{aligned}$	5 pF			$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z}: \mathrm{V} \text { OH }-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{V} \text { OL }+0.5 \mathrm{~V} \end{aligned}$

ENDURANCE

Symbol	Parameter Description	Test Conditions	Min	Unit
tor	Pattern Data Retention Time	Max Storage Temperature	10	Years
		Max Operating Temperature	20	Years
N	Reprogramming Cycles	Normal Programming Conditions	100	Cycles

INPUT/OUTPUT EQUIVALENT SCHEMATICS

Typical Output

Power-Up Reset

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up.
This feature is valuable in simplifying state machine infialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and wide range of ways V_{Cc} can rise to

Parameter Symbol	Parameter Description	Max	Unit
tpr	Power-up Reset Time	1000	ns
ts	Input or Feedback Setup Time	See Switching Characteristics	
twL	Clock Width Low		

its steady state, two conditions are required to insure a valid power-up reset. These conditions are:

- The V_{cc} rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HiGH unti all applicable input and feedback setup times are met

Power-Up Reset Waveform

