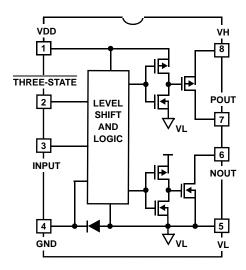


Data Sheet March 8, 2007 FN7278.2


High Speed, Monolithic Pin Driver

The EL7154 three-state pin driver is particularly well suited for ATE and level shifting applications. The 4A peak drive capability, makes the EL7154 an excellent choice when driving high speed capacitive lines.

The P-Channel MOSFET is completely isolated from the power supply, providing a high degree of flexibility. Pin (7) can be grounded, and the output can be taken from pin (8) when a "source follower" output is desired. The N-Channel MOSFET has an isolated drain, but shares a common bus with pre-drivers and level shifter circuits. This is necessary to ensure that the N-Channel device can turn off effectively when V_L goes below GND. In some power-FET and IGBT applications, negative drive is desirable to insure effective turn-off. The EL7154 can be used in these applications by returning V_L to a moderate negative potential.

Pinout

EL7154 (8 LD PDIP, 8 LD SOIC) TOP VIEW

Truth Table

THREE-STATE	INPUT	Pout	N _{OUT}
0	0	Open	Open
0	1	Open	Open
1	0	HIGH	Open
1	1	Open	LOW

Manufactured under U.S. Patent Nos. 5,334,883, #5,341,047, #5,352,578, #5,352,389, #5,351,012, #5,374,898

Features

- · Comparatively low cost
- · Three-State output
- 3V and 5V Input compatible
- · Clocking speeds up to 10MHz
- · 20ns Switching/delay time
- 4A Peak drive
- · Isolated drains
- Low output impedance: 2.5Ω
- · Low quiescent current: 5mA
- Wide operating voltage: 4.5V to16V
- Isolated P-Channel device
- · Separate ground and V_L pins
- · Pb-free plus anneal available (RoHS compliant)

Applications

- · Loaded circuit board testers
- Digital testers
- · Level shifting below GND
- IGBT drivers
- · CCD drivers

Ordering Information

PART NUMBER	PART MARKING	TAPE AND REEL	PACKAGE	PKG. DWG. #
EL7154CN	EL7154CN	-	8 Ld PDIP	MDP0031
EL7154CNZ	EL7154CN Z	-	8 Ld PDIP* (Pb-free)	MDP0031
EL7154CS	7154CS	-	8 Ld SOIC	MDP0027
EL7154CS-T7	7154CS	7"	8 Ld SOIC	MDP0027
EL7154CS-T13	7154CS	13"	8 Ld SOIC	MDP0027
EL7154CSZ (See Note)	7154CSZ	-	8 Ld SOIC (Pb-free)	MDP0027
EL7154CSZ-T7 (See Note)	7154CSZ	7"	8 Ld SOIC (Pb-free)	MDP0027
EL7154CSZ-T13 (See Note)	7154CSZ	13"	8 Ld SOIC (Pb-free)	MDP0027

^{*}Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Nominal Operating Voltage Range

PIN	MIN	MAX
VL	-3	0
V _{DD} to V _L	5	15
V _H to V _L	2	15
V _{DD} to V _H	-0.5	15
V_{DD}	5	15

Absolute Maximum Ratings (T_A = +25°C)

Supply $(V_{DD}$ to V_L ; V_H to V_L , V_H to GND),	
V+ to V _H	16.5V
V _L to GND	5V
Input Pins0.3V below V _L to +0.3V above	e V _{DD}
Peak Output Current	4A

Thermal Information

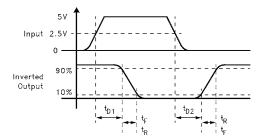
Storage Temperature Range65°C to +150°C
Ambient Operating Temperature
Operating Junction Temperature
Power Dissipation
SOIC
PDIP*
Pb-free reflow profile see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp

^{*}Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

DC Electrical Specifications $T_A = +25$ °C, $V_{DD} = +12$ V, $V_H = +12$ V, $V_L = -3$ V, unless otherwise specified.


PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT					<u>I</u>	<u>"</u>
V _{IH}	Logic "1" Input Voltage	2.4				V
I _{IH}	Logic "1" Input Current	$V_{IH} = V_{DD}$		0.1	10	μA
V _{IL}	Logic "0" Input Voltage				0.6	V
I _{IL}	Logic "0" Input Current	V _{IL} = 0V		0.1	10	μA
V _{HVS}	Input Hysteresis			0.3		V
OUTPUT						
R _{OH}	Pull-Up Resistance	I _{OUT} = -100mA		1.5	4	Ω
R _{OL}	Pull-Down Resistance	I _{OUT} = +100mA		2	4	Ω
lout	Output Leakage Current	V _{DD} /GND		0.2	10	μA
I _{PK}	Peak Output Current	Source/Sink		4.0		Α
I _{DC}	Continuous Output Current	Source/Sink	200			mA
POWER SUPPLY				1	1	-
I _S	Power Supply Current	Inputs = V _{DD}		1	2.5	mA
V _S	Operating Voltage		4.5		16	V
IG	Current to GND (Pin 4)			1	10	μA
I _H	Off Leakage at V _H	Pin 8 = 0V		1	10	μA

AC Electrical Specifications T_A = +25°C unless otherwise specified


PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS		
SWITCHING CHARACTERISTICS ($V_{DD} = V_{H} = 12V$; $V_{L} = -3V$)								
t _R	Rise Time	C _L = 100pF		4	25	ns		
		C _L = 2000pF		20				
t _F	Fall Time	C _L = 100pF		4	25	ns		
		C _L = 2000pF		20				
t _{D-1}	Turn-Off Delay Time	C _L = 2000pF		20	25	ns		
t _{D-2}	Turn-On Delay Time	C _L = 2000pF		10	25	ns		
t _{D-1}	Three-State Delay				25	ns		
t _{D-2}	Three-State Delay				25	ns		

FN7278.2 March 8, 2007

Timing Table

Standard Test Configuration

Typical Performance Curves

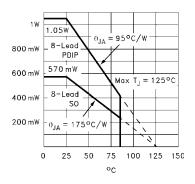


FIGURE 1. MAX POWER DERATING CURVES

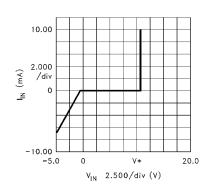


FIGURE 3. INPUT CURRENT vs VOLTAGE

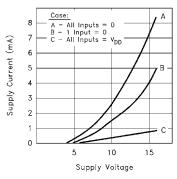


FIGURE 5. QUIESCENT SUPPLY CURRENT

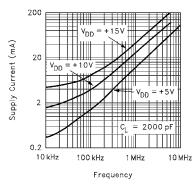


FIGURE 7. AVERAGE SUPPLY CURRENT vs VOLTAGE AND FREQUENCY

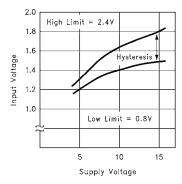


FIGURE 2. SWITCH THRESHOLD vs SUPPLY VOLTAGE

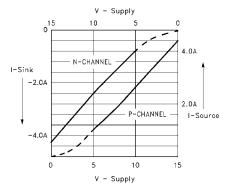


FIGURE 4. PEAK DRIVE vs SUPPLY VOLTAGE

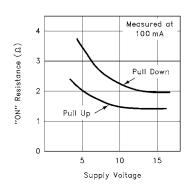


FIGURE 6. "ON" RESISTANCE vs SUPPLY VOLTAGE

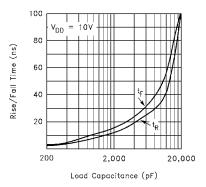


FIGURE 8. RISE/FALL TIME vs LOAD

intersil FN7278.2 March 8, 2007

Typical Applications

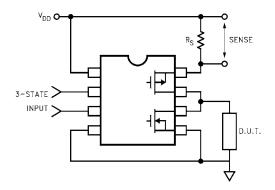


FIGURE 9. PIN DRIVER

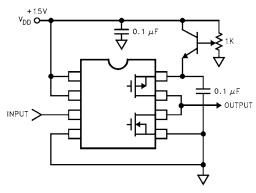


FIGURE 10. ADJUSTABLE AMPLITUDE PULSE GENERATOR

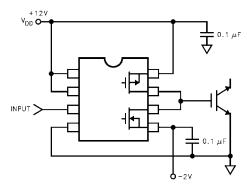


FIGURE 11. IGBT DRIVER WITH NEGATIVE SWING

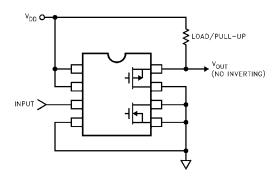


FIGURE 12. PMDS FOLLOWER

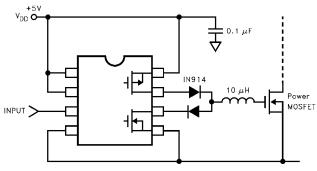
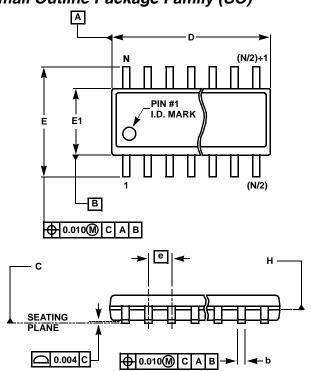
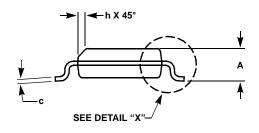
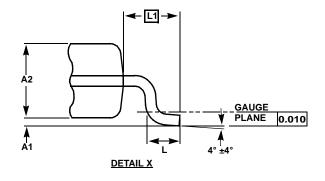
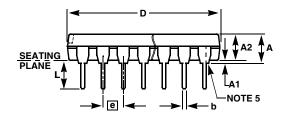





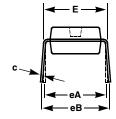
FIGURE 13. RESONANT GATE DRIVER

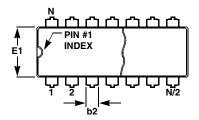
Small Outline Package Family (SO)

MDP0027

SMALL OUTLINE PACKAGE FAMILY (SO)


	INCHES								
SYMBOL	SO-8	SO-14	SO16 (0.150")	SO16 (0.300") (SOL-16)	SO20 (SOL-20)	SO24 (SOL-24)	SO28 (SOL-28)	TOLERANCE	NOTES
Α	0.068	0.068	0.068	0.104	0.104	0.104	0.104	MAX	-
A1	0.006	0.006	0.006	0.007	0.007	0.007	0.007	±0.003	-
A2	0.057	0.057	0.057	0.092	0.092	0.092	0.092	±0.002	-
b	0.017	0.017	0.017	0.017	0.017	0.017	0.017	±0.003	-
С	0.009	0.009	0.009	0.011	0.011	0.011	0.011	±0.001	-
D	0.193	0.341	0.390	0.406	0.504	0.606	0.704	±0.004	1, 3
Е	0.236	0.236	0.236	0.406	0.406	0.406	0.406	±0.008	-
E1	0.154	0.154	0.154	0.295	0.295	0.295	0.295	±0.004	2, 3
е	0.050	0.050	0.050	0.050	0.050	0.050	0.050	Basic	-
L	0.025	0.025	0.025	0.030	0.030	0.030	0.030	±0.009	-
L1	0.041	0.041	0.041	0.056	0.056	0.056	0.056	Basic	-
h	0.013	0.013	0.013	0.020	0.020	0.020	0.020	Reference	-
Ν	8	14	16	16	20	24	28	Reference	-


NOTES:


Rev. M 2/07

- 1. Plastic or metal protrusions of 0.006" maximum per side are not included.
- 2. Plastic interlead protrusions of 0.010" maximum per side are not included.
- 3. Dimensions "D" and "E1" are measured at Datum Plane "H".
- 4. Dimensioning and tolerancing per ASME Y14.5M-1994

Plastic Dual-In-Line Packages (PDIP)

MDP0031

PLASTIC DUAL-IN-LINE PACKAGE

			INCHES				
SYMBOL	PDIP8	PDIP14	PDIP16	PDIP18	PDIP20	TOLERANCE	NOTES
Α	0.210	0.210	0.210	0.210	0.210	MAX	
A1	0.015	0.015	0.015	0.015	0.015	MIN	
A2	0.130	0.130	0.130	0.130	0.130	±0.005	
b	0.018	0.018	0.018	0.018	0.018	±0.002	
b2	0.060	0.060	0.060	0.060	0.060	+0.010/-0.015	
С	0.010	0.010	0.010	0.010	0.010	+0.004/-0.002	
D	0.375	0.750	0.750	0.890	1.020	±0.010	1
E	0.310	0.310	0.310	0.310	0.310	+0.015/-0.010	
E1	0.250	0.250	0.250	0.250	0.250	±0.005	2
е	0.100	0.100	0.100	0.100	0.100	Basic	
eA	0.300	0.300	0.300	0.300	0.300	Basic	
eB	0.345	0.345	0.345	0.345	0.345	±0.025	
L	0.125	0.125	0.125	0.125	0.125	±0.010	
N	8	14	16	18	20	Reference	

Rev. C 2/07

NOTES:

- 1. Plastic or metal protrusions of 0.010" maximum per side are not included.
- 2. Plastic interlead protrusions of 0.010" maximum per side are not included.
- 3. Dimensions E and eA are measured with the leads constrained perpendicular to the seating plane.
- 4. Dimension eB is measured with the lead tips unconstrained.
- 5. 8 and 16 lead packages have half end-leads as shown.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

intersil