

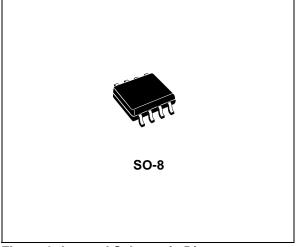
STS8C5H30L

N-CHANNEL 30V - 0.018Ω - 8A SO-8 P-CHANNEL 30V - 0.045Ω - 5A SO-8 LOW GATE CHARGE StripFET™ III MOSFET

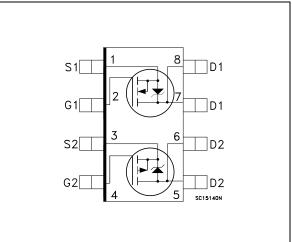
Table 1: General Features

ТҮРЕ	V _{DSS}	R _{DS(on)}	Ι _D
STS8C5H30L (N-Channel)		< 0.022 Ω	8 A
STS8C5H30L (P-Channel)		< 0.055 Ω	5 A

- TYPICAL R_{DS(on)} (N-Channel) = 0.018 Ω
- TYPICAL R_{DS(on)} (P-Channel) = 0.045 Ω
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- LOW THRESHOLD DRIVE
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY


DESCRIPTION

This MOSFET is the latest development of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.


APPLICATIONS

- DC/DC CONVERTERS
- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT
- POWER MANAGEMENT IN CELLULAR PHONES
- DC MOTOR DRIVE

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

PART NUMBER	MARKING	PACKAGE	PACKAGING
STS8C5H30L	S8C5H30L	SO-8	TAPE & REEL

STS8C5H30L

Table 3: Absolute Maximum ratings

Symbol	Parameter	Valu	Value			
		N-CHANNEL	P-CHANNEL			
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30)	V		
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	30)	V		
V _{GS}	Gate- source Voltage ± 16 ± 16		± 16	V		
I _D	Drain Current (continuous) at T _C = 25°C Single Operating	8 4.2		A		
ID	Drain Current (continuous) at T _C = 100°C Single Operating	6.4 3.1		A		
I _{DM} (•)	Drain Current (pulsed)	32	16.8	Α		
P _{TOT}	Total Dissipation at $T_C = 25^{\circ}C$ Dual Operating Total Dissipation at $T_C = 25^{\circ}C$ Single Operating	1.6 2		W W		
T _j T _{stg}	Operating Junction Temperature150Storage Temperature-55 to 150			℃ ℃		

(•) Pulse width limited by safe operating area Note: For the P-CHANNEL MOSFET actual polarity of voltages and current has to be reversed

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Single Operating	62.5	°C/W
	Dual Operating	78	°C/W
TI	Maximum Lead Temperature For Soldering Purpose	300	°C

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 5: On/Off

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 250 \ \mu A, V_{GS} = 0$	n-ch p-ch	30 30			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125°C	n-ch p-ch			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V_{GS} = ± 16V V_{GS} = ± 16V	n-ch p-ch			±100 ±100	nA nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	n-ch p-ch	1 1	1.6	2.5	V V
R _{DS(on)}	Static Drain-source On Resistance		n-ch p-ch n-ch p-ch		0.018 0.045 0.020 0.070	0.022 0.055 0.025 0.075	Ω Ω Ω

Table 6: Dynamic

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} = 15 V, I_D = 4 A$ $V_{DS} = 15 V, I_D = 2.5 A$	n-ch p-ch		8.5 10		S S
C _{iss}	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$	n-ch p-ch		857 1350		pF pF
Coss	Output Capacitance		n-ch p-ch		147 490		pF pF
C _{rss}	Reverse Transfer Capacitance		n-ch p-ch		20 130		pF pF

(1) Pulsed: Pulse duration = $300 \,\mu$ s, duty cycle 1.5%

ELECTRICAL CHARACTERISTICS(CONTINUED) Table 7: Switching On

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 4 \text{ A},$ R _G = 4.7 Ω , V _{GS} = 4.5 V	n-ch p-ch		12 25		ns ns
		$\label{eq:p-channel} \begin{array}{l} \textbf{P-CHANNEL} \\ \textbf{V}_{DD} = 15 \ \textbf{V}, \ \textbf{I}_{D} = 2 \ \textbf{A}, \\ \textbf{R}_{G} = 4.7 \ \Omega, \ \textbf{V}_{GS} = 4.5 \ \textbf{V} \\ (\text{Resistive Load see, Figure 28}) \end{array}$	n-ch p-ch		14.5 35		ns ns
Qg	Total Gate Charge	V _{DD} = 24 V, I _D = 8 A, V _{GS} = 5 V	n-ch p-ch		7 12.5	10 16	nC nC
Q_gs	Gate-Source Charge	P-CHANNEL $V_{DD} = 24 \text{ V}, \text{ I}_{D} = 4 \text{ A},$	n-ch p-ch		2.5 5		nC nC
Q _{gd}	Gate-Drain Charge	V _{GS} = 5 V (see, Figure 31)	n-ch p-ch		2.3 3		nC nC

Table 8: Switching Off

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$V_{DD} = 15 \text{ V}, \text{ I}_D = 4 \text{ A},$ R _G = 4.7 Ω , V _{GS} = 4.5 V	n-ch p-ch		23 125		ns ns
		P-CHANNEL $V_{DD} = 15 \text{ V}, \text{ I}_D = 2.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 4.5 \text{ V}$ (Resistive Load see, Figure 28)	n-ch p-ch		8 35		ns ns

Table 9: Source-Drain Diodef

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current		n-ch p-ch			8 5	A A
I _{SDM} (2)	Source-drain Current (pulsed)		n-ch p-ch			32 20	A A
V _{SD} (1)	Forward On Voltage	$I_{SD} = 8 \text{ A}, V_{GS} = 0$ $I_{SD} = 5 \text{ A}, V_{GS} = 0$	n-ch p-ch			1.5 1.2	V V
t _{rr}	Reverse Recovery Time	I _{SD} = 8 A, di/dt = 100 A/µs V _{DD} = 15V, T _j = 150°C	n-ch p-ch		15 45		ns ns
Qrr	Reverse Recovery Charge	P-CHANNEL	n-ch p-ch		5.7 36		nC nC
I _{RRM}	Reverse Recovery Current	$I_{SD} = 5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 15\text{V}, \text{ T}_{j} = 150^{\circ}\text{C}$ (see test circuit, Figure 29)	n-ch p-ch		0.76 1.6		A A

(1) Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

(2) Pulse width limited by safe operating area.

(3) Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Figure 3: Safe Operating n-channel

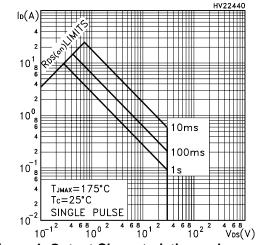
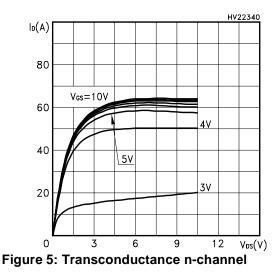
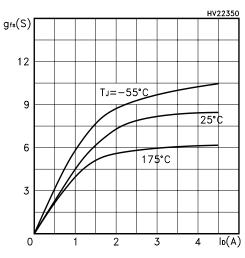




Figure 4: Output Characteristics n-channel

Figure 6: Thermal Impedance For Complementary Pair

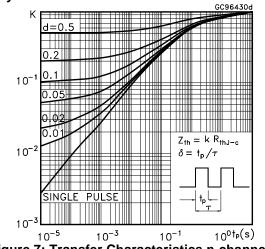


Figure 7: Transfer Characteristics n-channel

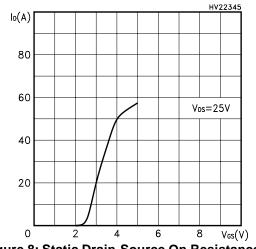


Figure 8: Static Drain-Source On Resistance nchannel

Figure 9: Gate Charge vs Gate-Source Voltage n-channel

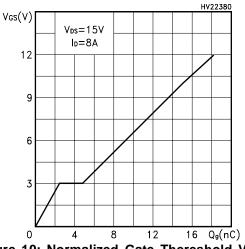


Figure 10: Normalized Gate Thereshold Voltage vs Temperature n-channel

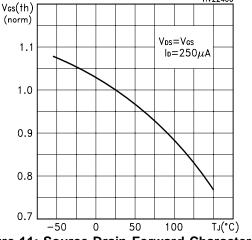
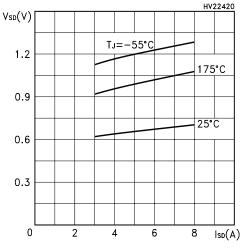



Figure 11: Source-Drain Forward Characteristics n-channel

Figure 12: Capacitance Variations n-channel

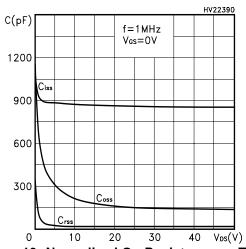


Figure 13: Normalized On Resistance vs Temperature n-channel

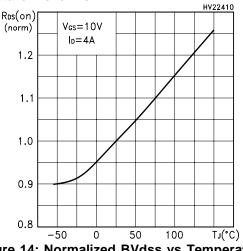


Figure 14: Normalized BVdss vs Temperature n-channel

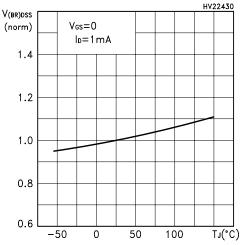


Figure 15: Safe Operating p-channel

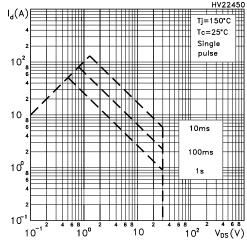
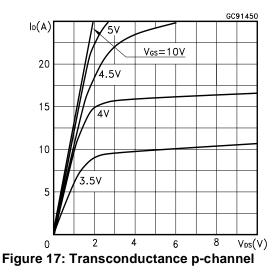



Figure 16: Output Characteristics p-channel

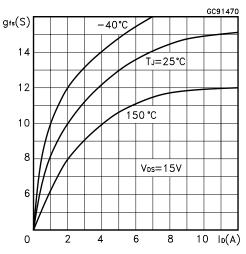


Figure 18: Thermal Impedance for Complementary Pair

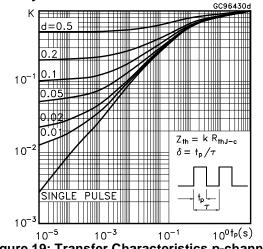


Figure 19: Transfer Characteristics p-channel

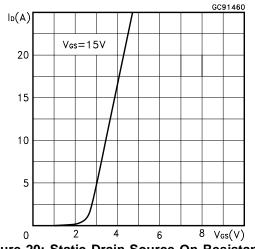
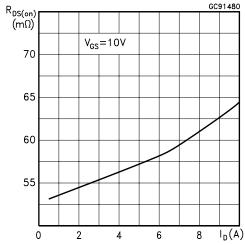



Figure 20: Static Drain-Source On Resistance p-channel

Figure 21: Gate Charge vs Gate-Source Voltage p-channel

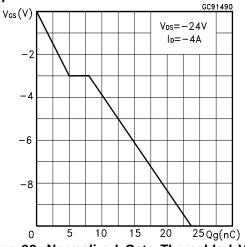


Figure 22: Normalized Gate Thereshlod Voltage vs Temperature p-channel

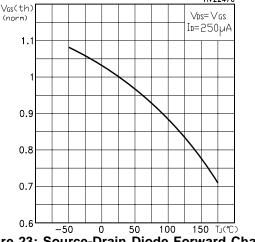
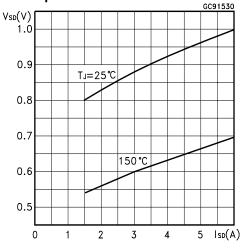



Figure 23: Source-Drain Diode Forward Characteristics p-channel

Figure 24: Capacitances Variations p-channel

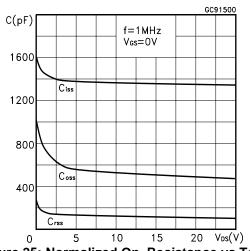


Figure 25: Normalized On Resistance vs Temperature p-channel

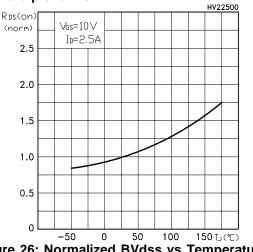


Figure 26: Normalized BVdss vs Temperature p-channel

Figure 27: Unclamped Inductive Load Test Circuit

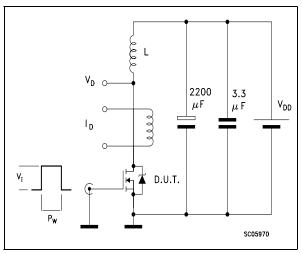


Figure 28: Switching Times Test Circuit For Resistive Load

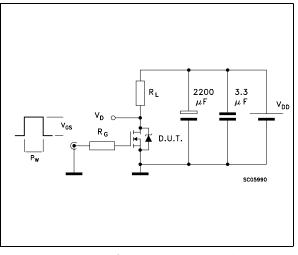


Figure 29: Test Circuit For Inductive Load Switching and Diode Recovery Times

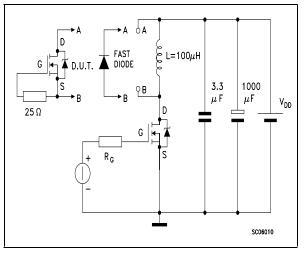


Figure 30: Unclamped Inductive Wafeform

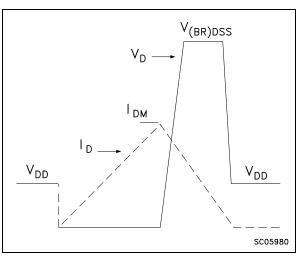
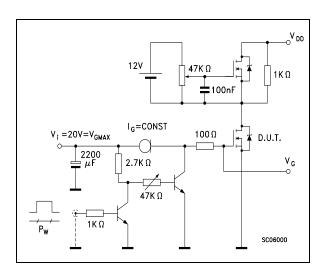
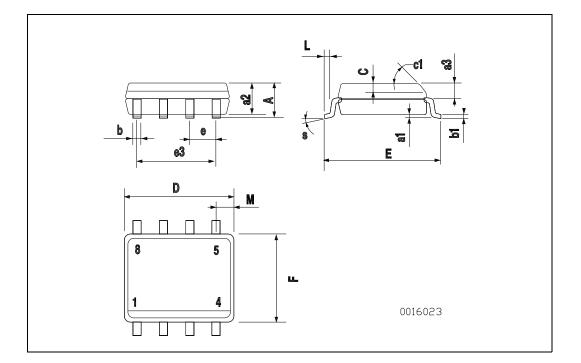




Figure 31: Gate Charge Test Circuit

DIM.		mm.			inch	
DIWI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45	(typ.)		
D	4.8		5.0	0.188		0.196
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023

Table 10: Revision History

Date	Revision	Description of Changes
10-Aug-2004	1	First Revision
10-Sep-2004	2	Complete Version

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

__