Power MOSFET

-20 V, 6.7 A, P-Channel ChipFET™

Features

- Offers an Ultra Low R_{DS(on)} Solution in the ChipFET Package
- Miniature ChipFET Package 40% Smaller Footprint than TSOP-6 making it an Ideal Device for Applications where Board Space is at a Premium
- Low Profile (<1.1 mm) Allows it to Fit Easily into Extremely Thin Environments such as Portable Electronics
- Designed to Provide Low R_{DS(on)} at Gate Voltage as Low as 1.8 V, the Operating Voltage used in many Logic ICs in Portable Electronics
- Simplifies Circuit Design since Additional Boost Circuits for Gate Voltages are not Required
- Operated at Standard Logic Level Gate Drive, Facilitating Future Migration to Lower Levels using the same Basic Topology
- Pb-Free Package is Available

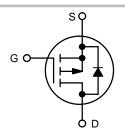
Applications

- Optimized for Battery and Load Management Applications in Portable Equipment such as MP3 Players, Cell Phones, Digital Cameras, Personal Digital Assistant and other Portable Applications
- Charge Control in Battery Chargers
- Buck and Boost Converters

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

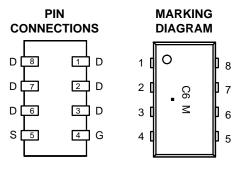
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-20	V _{dc}
Gate-to-Source Voltage - Continuous	V _{GS}	±8.0	V _{dc}
Drain Current – Continuous – 5 seconds	I _D	-4.8 -6.7	А
Total Power Dissipation Continuous @ $T_A = 25^{\circ}C$ (5 sec) @ $T_A = 25^{\circ}C$ Continuous @ $85^{\circ}C$ (5 sec) @ $85^{\circ}C$	P _D	1.3 2.5 0.7 1.3	W
Pulsed Drain Current – t _p = 10 μs	I _{DM}	-190	Α
Continuous Source Current	ls	-4.8	Α
Thermal Resistance (Note 1) Junction–to–Ambient, 5 sec Junction–to–Ambient, Continuous	R _{θJA} R _{θJA}	50 95	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T _L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


 Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.27 in sq [1 oz] including traces).

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
-20 V	21 mΩ @ -4.5 V	
	30 mΩ @ –2.5 V	–6.7 A
	42 mΩ @ –1.8 V	

P-Channel MOSFET

ChipFET CASE 1206A STYLE 1

C6 = Specific Device Code

M = Month Code

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTHS4101PT1	ChipFET	3000 Tape / Reel
NTHS4101PT1G	ChipFET (Pb-free)	3000 Tape / Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (Note 2) Temperature Coefficient (Positive)	V _{(Br)DSS}	$V_{GS} = 0 \ V_{dc}, \ I_{D} = -250 \ \mu A_{dc}$	-20			V _{dc}
Gate-Body Leakage Current Zero	I _{GSS}	$V_{DS} = 0 \ V_{dc}, \ V_{GS} = \pm 8.0 \ V_{dc}$			±100	nA _{dc}
Zero Gate Voltage Drain Current	I _{DSS}	$\begin{aligned} V_{DS} &= -16 \ V_{dc}, \ V_{GS} = 0 \ V_{dc} \\ V_{DS} &= -16 \ V_{dc}, \ V_{GS} = 0 \ V_{dc}, \\ T_{J} &= 85^{\circ}C \end{aligned}$			-1.0 -5.0	μA _{dc}
ON CHARACTERISTICS (Note 2)	•		1			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A_{dc}$	-0.45		-1.5	V_{dc}
Static Drain-to-Source On-Resistance	R _{DS(on)}	$\begin{array}{c} V_{GS} = -4.5 \ V_{dc}, \ I_{D} = -4.8 \ A_{dc} \\ V_{GS} = -2.5 \ V_{dc}, \ I_{D} = -4.2 \ A_{dc} \\ V_{GS} = -1.8 \ V_{dc}, \ I_{D} = -1.0 \ A_{dc} \end{array}$		21 30 42	34 40 52	mΩ
Forward Transconductance	9FS	$V_{DS} = -5.0 V_{dc}, I_{D} = -4.8 A_{dc}$		15		S
Diode Forward Voltage	V_{SD}	$I_{S} = -4.8 A_{dc}, V_{GS} = 0 V_{dc}$		-0.8	-1.2	V
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{iss}	$V_{DS} = -16 V_{dc}$		2100		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 V$ $f = 1.0 MHz$		290		
Transfer Capacitance	C _{rss}	1 = 1.0 WH12		200		
SWITCHING CHARACTERISTICS (Note 3)						
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -16 V_{dc}$		8.0		ns
Rise Time	t _r	$V_{GS} = -4.5 V_{dc}$		28		
Turn-Off Delay Time	t _{d(off)}	$I_{D} = -4.5 A_{dc}$		75		
Fall Time	t _f	$R_G = 2.5 \Omega$		60		
Gate Charge	Qg	$V_{GS} = -4.5 V_{dc}$		25	35	nC
	Q _{gs}	$I_{D} = -4.5 A_{dc}$		4.0		
	Q _{gd}	$V_{DS} = -16 V_{dc}$ (Note 3)		7.0		

Pulse Test: Pulse Width = 250 μs, Duty Cycle = 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

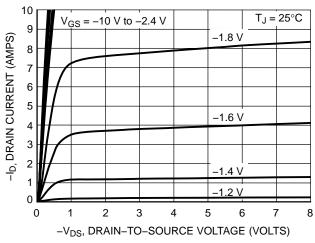


Figure 1. On-Region Characteristics

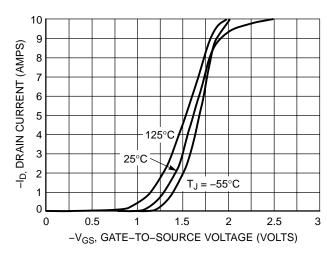


Figure 2. Transfer Characteristics

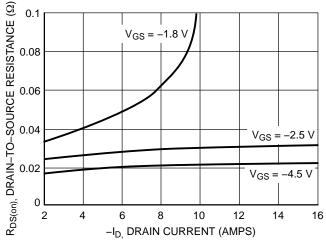


Figure 3. On–Resistance vs. Drain Current and Gate Voltage

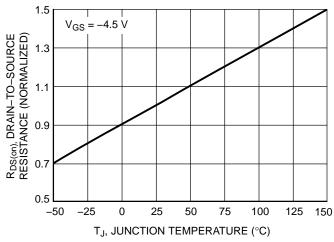


Figure 4. On–Resistance Variation with Temperature

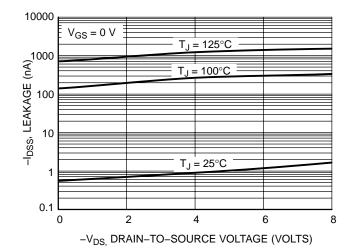


Figure 5. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

-V_{GS,} GATE-TO-SOURCE VOLTAGE (VOLTS)

2

0

∢ Q1 → ∢

3

Q2

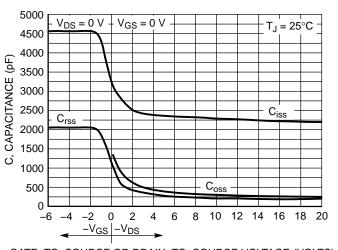
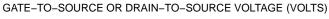
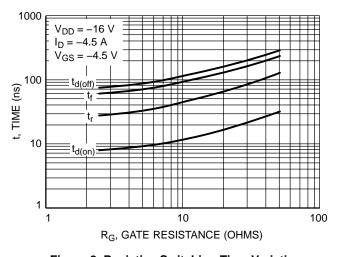




Figure 7. Gate-to-Source and Drain-to-Source

9

Voltage vs. Total Gate Charge

12

15

Qg, TOTAL GATE CHARGE (nC)

18

QΤ

 $I_D = -4.5 A$

24

27

 $T_J = 25^{\circ}C$

21

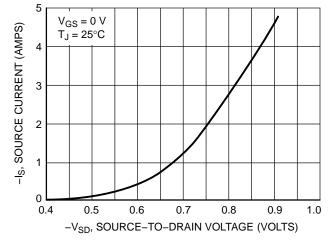


Figure 8. Resistive Switching Time Variation vs. Gate Resistance

Figure 9. Diode Forward Voltage vs. Current

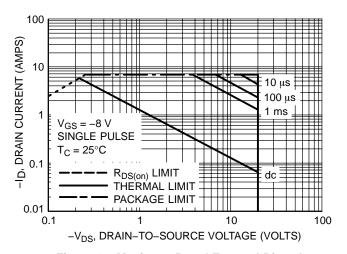
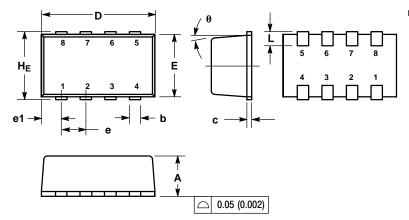
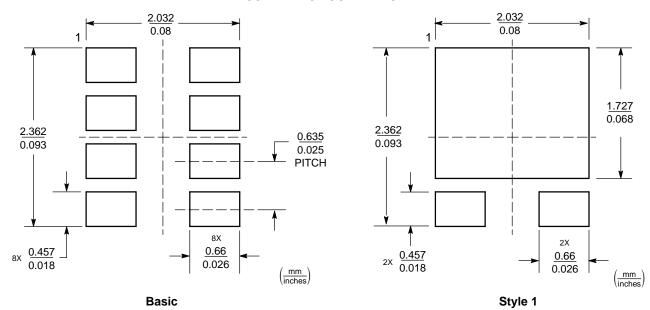



Figure 10. Maximum Rated Forward Biased Safe Operating Area

PACKAGE DIMENSIONS

ChipFET™ CASE 1206A-03 ISSUE H



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE.
 4. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL
 AND VERTICAL SHALL NOT EXCEED 0.08 MM.
 5. DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS.
- NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.00	1.05	1.10	0.039	0.041	0.043
b	0.25	0.30	0.35	0.010	0.012	0.014
С	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	1.55	1.65	1.70	0.061	0.065	0.067
е	0.65 BSC			0.025 BSC		
e1	0.55 BSC			0.022 BSC		
L	0.28	0.35	0.42	0.011	0.014	0.017
HE	1.80	1.90	2.00	0.071	0.075	0.079
θ	5° NOM				5° NOM	

- STYLE 1:
 PIN 1. DRAIN
 2. DRAIN
 3. DRAIN
 4. GATE
 5. SOURCE
 6. DRAIN
 7. DRAIN
 8. DRAIN

SOLDERING FOOTPRINTS*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ChipFET is a trademark of Vishay Siliconix.

ON Semiconductor and was registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative