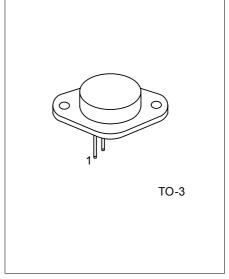
UNISONIC TECHNOLOGIES CO., LTD

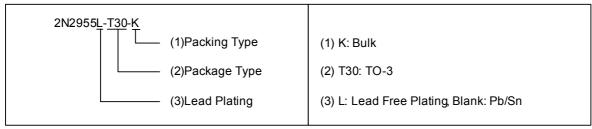

2N2955

PNP SILICON TRANSISTOR

SILICON PNP TRANSISTORS

DESCRIPTION

The UTC 2N2955 is a silicon PNP transistor in TO-3 metal case. It is intended for power switching circuits, series and shunt regulators, output stages and high fidelity amplifiers.



*Pb-free plating product number:2N2955L

ORDERING INFORMATION

Order Number		Doolsono	Pin Assignment			Dooking
Normal	Lead Free Plating	Package	1	2	3	Packing
2N2955-T30-K	2N2955L-T30-K	TO-3	F	В	С	Bulk

Note: 3: Case

www.unisonic.com.tw 1 of 2 QW-R205-004,B

■ **ABSOLUTE MAXIMUM RATINGS** (Ta=25°C ,unless otherwise specified)

PARAMETERS	SYMBOL	RATINGS	UNITS
Collector-Base Voltage		100	V
Collector-Emitter Voltage	V_{CEO}	60	V
Emitter-Base Voltage	V_{EBO}	7	V
Collector-Emitter Voltage	V_{CEV}	70	V
Collector Current	Ic	15	Α
Collector Peak Current(1)	I _{CM}	15	Α
Base Current	I_{B}	7	Α
Base Peak Current(1)	I_{BM}	15	Α
Total Dissipation at Ta=25°C	P_D	115	W
Max. Operating Junction Temperature	TJ	+200	°C
Storage Temperature	T _{STG}	-65 ~ 200	°C

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Collector-Emitter Sustaining Voltage	V _{CEO(SUS)}	I _C =200mA, I _B =0V	60			٧	
Collector-Emitter Sustaining Voltage	V _{CER(SUS)}	I_{C} =0.2 A, R_{BE} =100 Ω	70			V	
Collector Cut-off Current	I _{CEO}	$V_{CE}=30V,I_{B}=0$			0.7	mA	
Collector Cut-off Current	I _{CEX}	V_{CE} =100V, $V_{BE(OFF)}$ =1.5V V_{CE} =100V, $V_{BE(OFF)}$ =1.5V, Ta=150°C			1.0 5.0	mA	
Emitter Cut-off Current	I _{EBO}	V _{BE} =7V, I _C =0			5.0	mA	
ON CHARACTERISTICS							
DC Current Gain(Note)	h _{FE}	I _C =4A,V _{CE} =4V, I _C =10A,V _{CE} =4V	20 5		70		
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C =4A, I _B =400mA I _C =10A, I _B =3.3A			1.1 3.0	V	
Base-Emitter On Voltage	$V_{BE(ON)}$	I _C =4A, V _{CE} =4V			1.5	V	
SECOND BREAKDOWN							
Second Breakdown Collector with Base Forward Biased	ls/b	V _{CE} =60V, T=1.0s, Non-repetitive	2.87			Α	
DYNAMIC CHARACTERISTICS							
Current Gain-Bandwidth Product	f_{T}	I _C =0.5A, V _{CE} =10V, f=1MHz	2.5			MHz	
Small-Signal Current Gain	h_FE	I _C =1A, V _{CE} =4V, f=1kHz	15		120		
Small-Signal Current Gain Cut-off Frequency	fh _{FE}	I _C =1A, V _{CE} =4V, f=1kHz	10			kHz	

 $Note (1) : Pulse \ Test: \ PW \quad 300 \mu s, \ Duty \ Cycle \quad 2\%$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.